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Purpose: To develop and validate a deep learning system (DLS) for estimation of vertical
cup-to-disc ratio (vCDR) in ultra-widefield (UWF) and smartphone-based fundus images.

Methods: A DLS consisting of two sequential convolutional neural networks (CNNs)
to delineate optic disc (OD) and optic cup (OC) boundaries was developed using 800
standard fundus images from the public REFUGE data set. The CNNs were tested on 400
test images from the REFUGE data set and 296 UWF and 300 smartphone-based images
from a teleophthalmology clinic. vCDRs derived from the delineated OD/OC bound-
aries were compared with optometrists’ annotations using mean absolute error (MAE).
Subgroup analysis was conducted to study the impact of peripapillary atrophy (PPA),
and correlation study was performed to investigate potential correlations between
sectoral CDR (sCDR) and retinal nerve fiber layer (RNFL) thickness.

Results: The system achieved MAEs of 0.040 (95% Cl, 0.037-0.043) in the REFUGE test
images, 0.068 (95% Cl, 0.061-0.075) in the UWF images, and 0.084 (95% Cl, 0.075-0.092)
in the smartphone-based images. There was no statistical significance in differences
between PPA and non-PPA images. Weak correlation (r = —0.4046, P < 0.05) between
sCDR and RNFL thickness was found only in the superior sector.

Conclusions: We developed a deep learning system that estimates vCDR from standard,
UWF, and smartphone-based images. We also described anatomic peripapillary adver-
sarial lesion and its potential impact on OD/OC delineation.

Translational Relevance: Artificial intelligence can estimate vCDR from different types
of fundus images and may be used as a general and interpretable screening tool to
improve community reach for diagnosis and management of glaucoma.

defined as the ratio between the vertical diameter of the

Introduction

Glaucoma is the second leading cause of blind-
ness! and is projected to affect more than 111.8 million
people in 2040.> Diagnosing glaucoma requires manual
assessment of the optic disc regions to identify abnor-
mal cupping of the optic nerve, a key characteristic
of glaucoma. The vertical cup-to-disc ratio (vVCDR),

Copyright 2024 The Authors
tvst.arvojournals.org | ISSN: 2164-2591

optic cup (OC) and the vertical diameter of the optic
disc (OD), has been shown to be useful for assessing the
risk of glaucoma.? vCDR can be inferred from images
acquired from different modalities, such as optical
coherence tomography*> and fundus photography.®*
The latter offers a low-cost solution for glaucoma
screening, and portable fundus imaging devices based
on smartphones have the potential to be used in large
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population-based glaucoma screening.” However, a
precise measurement of vCDR would require detailed
delineations of the OD and OC, which can be a time-
consuming process, and hinder its use in large-scale
screening.

Automated systems based on deep learning have
been proven to be effective in classifying glaucoma in
standard fundus images (with an angle of view within
the range of 30-60 degrees),'’!3 ultra-widefield fundus
images (200 degrees angle of view),'* and smartphone-
based images.” However, classification-based convo-
lutional neural networks (CNNs) are often criticized
for their black-box nature and lack of interpretabil-
ity. While methods such as saliency map!® attempts to
explain the decision made by a CNN in a post hoc
manner, the resulting explanations might not always
be reliable.'® One possible solution for an interpretable
glaucoma diagnosis system is to design a modular
pipeline consisting of multiple detection/segmentation-
based CNNs, where each CNN focuses on detect-
ing/delineating key structures such as OD/OC. Once
the key structures have been delineated, quantitative
measurements such as vVCDR can be derived automat-
ically as inputs for inherently interpretable machine
learning models.

While prior work has considered deep learning for
automated vCDR estimation from fundus images,’-®
they were limited to standard fundus images and have
not been validated across other types of fundus images,
including ultra-widefield (UWF) and smartphone-
based images. Having generic models that can interop-
erate between different image types would be benefi-
cial in terms of scalability and maintainability of
the system. The same system can be used when
patients underwent screening via UWF imaging at a
hospital setting, or it can be used in a telemedicine
setting through portable/smartphone-based imaging
devices operated by nonmedically trained personnel.
The purpose of this study is to validate the effective-
ness and generalizability of our deep learning system
for vCDR estimation across standard, UWEF, and
smartphone-based images.

Standard Fundus Images

The REFUGE data set!” is a publicly available
data set consisting of 1,200 color fundus images with
reference OD/OC delineations and glaucoma labels
annotated by seven glaucoma specialists. The images
were divided into train, validation, and test sets with
a ratio of 1:1:1, each consisting of 40 glaucomatous
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Table 1. Demographics of the Patients in the AMK
Study (n = 151; 300 Eyes)

Characteristic Value

Age,y 61.54 +10.87 (27-87)
Sex
Male 87 (57.6)
Female 64 (42.4)
Ethnicity
Chinese 109 (72.2)
Indian 30(19.9)
Malay 10 (6.6)
Others 2(1.3)

Values are presented as n (%) or mean =+ SD (range).

and 360 nonglaucomatous cases. The images from
the train set were acquired using a Zeiss Visucam
500 camera, Germany (with a resolution of 2124 x
2056 pixels) while the images from the validation and
test set were acquired using a Canon CR-2 camera,
Japan (with a resolution of 1634 x 1634 pixels). All
images correspond to patients in a Chinese popula-
tion and were retrieved retrospectively from multi-
ple hospital and clinical studies. In this study, the
REFUGE data set was used as the source of standard
fundus images to investigate the feasibility of develop-
ing an automated vCDR estimation system that can
generalize to a more diverse population and imaging
devices.

UWF and Smartphone-Based Images

In total, 151 patients aged 27 to 87 years attend-
ing regular teleophthalmology follow-ups at the Ang
Mo Kio (AMK) Specialist Centre in Singapore were
recruited for this project. Details of the subject
demographics in the AMK study are shown in Table 1.
These patients have a range of ophthalmologic
problems, including diabetic retinopathy, cataracts,
glaucoma, or age-related macular degeneration. All
patients had their pupils dilated prior to having their
fundus photos taken by the Zeiss CLARUS 500 camera
and the oDocs Nun IR portable camera, oDocs Eye
Care, New Zealand (as demonstrated in Fig. 1) in a
dark consultation room. The study was performed in
accordance with the ethical standards of the Decla-
ration of Helsinki and was approved by the National
Healthcare Group Domain Specific Review Board
(2022/00556). Written informed consent was obtained
from all participants.

All UWF and smartphone fundus photos were then
manually graded according to a modified version of the
Singapore Integrated Diabetic Retinopathy Program
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Figure 1. Demonstration of the image acquisition process using
the smartphone-based oDocs Nun IR camera.

Table 2. Gradeability of Smartphone-Based Fundus
Photos Using a Modified Version of the SiDRP Criteria

Left Eye  Right Eye
(n=149), (n=151),
Characteristic n (%) n (%)
Gradable 100 (67.1) 97 (64.2)
Ungradable 49 (32.9) 54(35.8)
Ungradable causes
Uncorrectable 2(1.3) 6 (4.0)
underexposure
Uncorrectable overexposure 14 (9.4) 14 (9.3)
Severe obscuration 30(20.1) 38(25.2)
Insufficient focus 18(12.1)  14(9.3)
Incorrect positioning 1(0.7) 1(0.7)

Each ungradable image may correspond to more than one
ungradable cause.

(SiDRP) criteria for fundus image quality assessment
(see Supplementary Table S1 for the details of the
criteria). ImageJ version 1.53t (National Institutes of
Health, Bethesda, MD, USA) was used to optimize the
brightness and contrast of the images using an in-built
slider function. All UWF images were deemed gradable
while the causes for each smartphone-based photo
to be ungradable were also recorded and tabulated
in Table 2. The original SiDRP criteria require visibil-
ity of the fundus up to 1 disc diameter beyond the
vascular arcade, which converted all smartphone-based
photos to ungradable. As such, this particular crite-

Downloaded from m.iovs.org on 04/19/2024

TVST | April 2024 | Vol. 13 | No. 4 | Article 6 | 3

Distribution of vCDR
0.9 4 o
8 o
0.8 1 g
o
o
0.6 1
[- 4
g
0.5 1 I = : = ! ! >—
0.4 4
031 — —}-
o
024
REFUGE REFUGE REFUGE AMK
(train) (val) (test)

Figure 2. Distribution of vCDR in each data set.

rion was not taken into consideration in the grading
of the photos. The limited view of the smartphone-
based photos is likely an inherent limitation, as the
images retain most of the key features (e.g., fovea,
optic disc, vascular arcades) despite not fulfilling that
criterion.

The reference vCDR values for the AMK UWF
images were manually annotated by optometrists from
the AMK Specialist Centre via visual estimation on
the captured UWF images. The annotations were
then vetted by the primary eye care team at Tan
Tock Seng Hospital. The distributions of the refer-
ence VCDR values for each data set are shown in
Figure 2.

Automated vCDR Estimation System

An automated system based on deep learning was
developed for vCDR estimation. The pipeline of the
vCDR estimation system is shown in Figure 3. The
automated system consists of a detection CNN and a
segmentation CNN, both based on the U-Net archi-
tecture'® with a ResNet-18 encoder.!” The detection
CNN was trained to detect ODs from whole fundus
images by fitting square bounding boxes around the
ODs to generate region of interest (ROI) images for
the segmentation CNN, which in turn was trained to
delineate detailed boundaries for OD and OC. The
ROI image was dynamically extracted based on the
diameter of the detected OD to account for the hetero-
genic variability in the optic nerve head size. Specifi-
cally, a square bounding box with sides of 1.1 times the
diameter of the detected OD was extracted as the ROI



translational vision science & technology

Generalizability of DNNs for vCDR Estimation

Disc/cup boundaries

Fundus image

Uy
vCDR = —

A 4
Detection Segmentation
CNN CNN

‘ A

Detected ROI Detect=d ROl

Figure 3. Pipeline of the automated vCDR estimation system. v,
and v, represent the vertical optic disc diameter and vertical optic
cup diameter, respectively.

image. The vCDR value was calculated by measuring
and dividing the vertical diameter of the OC boundary
with the vertical diameter of the OD boundary.

The outputs of the CNNs were normalized to a
range of 0 to 1 using the sigmoid function to obtain
the probability maps. A threshold value of 0.5 was then
used to convert the probability maps into binary masks

Table 3. Details of the Data Sets Used in This Study
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of OD/OC. If the binary masks were empty, a fallback
mechanism based on Otsu’s method”® was used to
determine the threshold value automatically. Finally, a
postprocessing step based on the binary closing opera-
tion was performed to fill in small holes in the binary
masks to generate the OD/OC delineations.

To improve the robustness and quality of the
OD/OC delineations, test-time augmentation (TTA)
was applied during the inference process. TTA is
commonly used to remove noise by averaging the
outputs obtained from multiple augmented versions of
an input image. The augmentations used for TTA in
the automated vCDR estimation system include image
scaling (at 80%/90%/100% of the input resolution),
rotation (90/180/270 degrees), and flipping (horizon-
tal/vertical).

Training of Deep Neural Networks

A summary of the data sets used in this study is
given in Table 3. The 400 images from the validation set
of the REFUGE data set were used to guide the selec-
tion of hyperparameters. In the model development
phase, a set of models was trained on the 400 train-
ing images of the REFUGE data set to select the best
hyperparameters (learning rate, weight decay) based on
the performance on validation set. After the optimal
hyperparameters were determined, a new model was
trained on 800 images from both the training and
validation sets to make use of all the images available
in the development phase to improve model perfor-
mance. The trained model was then used for evaluating
the segmentation and vCDR estimation performance
on independent test images. Both CNNs were initial-
ized with parameters pretrained on the ImageNet data
set.”! The detection CNN was trained using an Adam
optimizer with a learning rate of 0.1 and a batch size

Characteristic REFUGE AMK-UWF AMK-Smartphone
Number of training images 400 — —
Number of validation images 400 — —
Number of testing images 400 Total: 296 Total: 300
Left: 147 Left: 149
Right: 149 Right: 151
Device ZEISS VISUCAM 500/Canon CR-2 ZEISS CLARUS 500 oDocs Nun IR
Angle of view 30°/45° 200° 45°-55°
Resolution (pixels) 2124 x 2056/1632 x 1634 1110 x 1111 2880 x 2160

For REFUGE, the validation images were merged with the training images to train the final model after the hyperparameter

selection phase.
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RNFL thickness (um)

(d)

(@) Measurement of sCDR on the ROI of UWF image. (b) RNFL thickness measured on each sector of the OCT en face fundus

image. (c) Labels of the angle correspond to each sector where sCDR was measured. (d) Labels of each sector where RNFL thickness was

measured.

of 8 for 100 epochs, while the segmentation CNN was
trained using an Adam optimizer with a learning rate
of 0.001 and a batch size of 5 for 100 epochs. The
learning rates were decreased gradually using a cosine
scheduler. The input images were resized to 800 x
800 pixels and 256 x 256 pixels for the detection
and segmentation CNN, respectively. Pixel values of
each image were normalized to a range of 0 to I,
and standard data augmentations including random
scaling (in the range of 0.6 to 1.0), random rotations
(up to 45 degrees), random horizontal and vertical
flips, random brightness/saturation/contrast shifts (in
the range of 0.6 to 1.4), and random hue shifts (in the
range of —0.1 to 0.1) were used to reduce the chance
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of overfitting during the training process. The CNNs
were implemented using the PyTorch framework? on
Python 3.9.16 and trained on a desktop computer with
a 24-GB NVIDIA RTX 3090 GPU.

Studying the Effect of Peripapillary Atrophy

Peripapillary atrophy (PPA) is characterized by the
choroidal thinning of the retinal layers around the
optic nerve. As it changes the appearance of regions
surrounding the optic nerve, PPA may be a poten-
tial confounder that would result in a wrong OD
segmentation and vCDR value. To study whether PPA
would negatively impact the performance of vCDR
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estimation, the UWF images collected from the AMK
Specialist Centre were individually assessed for the
presence of PPA by a trained ophthalmologist. Among
the 296 UWF images, 57.8% of the images (n = 171)
were found to contain PPA, and findings from UWF
images were applied to the paired smartphone-based
images.

Comparing Retinal Nerve Fiber Layer
Thickness With Sectoral CDR

Among the 151 patients enrolled in this study,
17 patients underwent additional optical coherence
tomography (OCT) screening using the Zeiss CIRRUS
HD-OCT system, resulting in 34 OCT scans with
corresponding retinal nerve fiber layer (RNFL) thick-
ness maps. The sectoral RNFL thickness values
extracted from 32 (excluding two scans with signal
strength <6) RNFL thickness maps were compared
against the sectoral cup-to-disc ratio (SCDR) inferred
from delineated UWF images. Figure 4 shows how the
sCDR was measured and how it is compared with the
RNFL thickness. A circle centered at the OC bound-
ary was divided into 12 equal sectors to match the
sectors of the RNFL thickness map. The sCDR of each
sector was then calculated as the ratio of the cup-to-
disc radius measured at the center line of each sector.
Before calculating the sCDRs, the images of the left
eyes were flipped horizontally to align the nasal and
temporal regions with the right-eyed images. Partial
Pearson correlation test was conducted to study the
correlation between sCDR and RNFL thickness at
each sector, with the confounding effect of the optic
disc area®*?* (extracted from the OCT scan report)
removed.

Statistical Analysis

The performance of the automated system in
delineating OD/OC was evaluated on the test set
of the REFUGE data set using the intersection
over union (IoU) metrics. Mean absolute error
(MAE) was used to compare the estimated vCDR
to the reference standard. vCDRs estimated from
the REFUGE test set were rounded to the nearest
two decimal places while the estimations from the
AMK UWF and smartphone-based images were
rounded to the nearest 0.05 to match the precision
of the optometrists’ annotations. The 95% confi-
dence intervals (CIs) were estimated for all perfor-
mance metrics. The agreement between the automated
system and references was examined using Bland-
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Altman plot analysis. All statistical analyses were
performed using the SciPy software package’ on
Python 3.9.16.

Performance of vCDR Estimations

The best IoUs achieved on the 400 validation images
from the REFUGE data set during the model devel-
opment phase were 0.901 (95% CI, 0.893-0.910) and
0.774 (95% CI, 0.762-0.786) for optic disc and optic
cup segmentation, respectively. The final segmentation
CNN (trained on the combination of 400 training +
400 validation images from the REFUGE data set)
were evaluated on 400 test images from the REFUGE
data set and achieve an IoU of 0.909 (95% CI, 0.905-
0.914) on OD delineation and an IoU of 0.796 (95%
CI, 0.787-0.805) on OC delineation. For vCDR estima-
tion, the automated system achieved MAEs of 0.040
(95% CI, 0.037-0.043), 0.068 (95% CI, 0.061-0.075),
and 0.084 (95% CI, 0.075-0.092) in the test set of the
REFUGE data set (n = 400), AMK UWF images
(n = 296), and AMK smartphone-based images (n =
300), respectively. Comparisons of the MAE achieved
on the REFUGE test set with the top submissions in
the REFUGE 2018 challenge!” are shown in Table 4.
When considering the gradeability of the smartphone-
based images under the SIDRP guidelines, the MAEs
on the gradable images (0.076; 95% CI, 0.067-0.085; n
= 197) were lower (P = 0.0228) compared to ungrad-
able images (0.098; 95% CI, 0.079-0.116; n = 103).
Scatterplots comparing the estimated vCDRs with the
reference values are provided in Figure 5.

Examples of the qualitative results from the
automated system are shown in Figures 6 and 7. The
Bland—-Altman plots in Figure 8 visualize the differ-
ences of the estimated vCDRs with the reference
standards in each testing image. On the test set of the

Table 4. Comparisons of vCDR Estimation Perfor-
mance in Terms of MAE with the Top 5 Submissions in
the REFUGE 2018 Challenge

Team Rank MAE

Masker 1 0.0414
CUHKMED 2 0.0450
BUCT 3 0.0456
NKSG 4 0.0465
AIML 5 0.0469
This work — 0.040
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Figure 5. (a, b) Scatterplots of the estimated vCDRs versus the reference values in each data set. Pearson correlation coefficient of the

predicted vCDR versus reference vCDR is provided for each testing set.

REFUGE data set (n = 400, Fig. 8a), the mean differ-
ence was 0.005 with the 95% limit of agreement of
—0.095 to 0.105. The mean differences in the AMK
UWF images (n =296, Fig. 8b) were —0.005 with a 95%
limit of agreement of —0.182 to 0.173. For the gradable
(n = 197, Fig. 8c) and ungradable (n = 103, Fig. 8d)
smartphone-based images, the mean differences were
—0.004 with a 95% limit of agreement of —0.196 to
0.188 and —0.021 with a 95% limit of agreement of
—0.284 to 0.242, respectively.

In terms of the agreement of the estimated vCDRs
within the paired UWF and smartphone-based images
(n = 296), the Bland—Altman plots in Figure 9a show
a high degree of agreement on the gradable images
(n = 194, excluding three smartphone-based images
without a paired UWF image) with zero mean differ-
ence and a 95% limit of agreement of —0.143 to
0.142. For the ungradable images (n = 102, excluding
one smartphone-based image without a paired UWF
image), the mean difference was —0.015, with a 95%
limit of agreement of —0.235 to 0.205 (Fig. 9b).

Effect of Peripapillary Atrophy

Table 5 shows the MAEs of the estimated vCDRs
and the results of independent ¢-tests comparing the
groups with PPA and the group without PPA. The
qualitative results for images with PPA are given
in Figure 10.
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Association Between OCT RNFL Thickness
and Fundus sCDR

Table 6 shows the results of the correlation
study of OCT RNFL thickness versus fundus CDR
at each sector. Without correcting for optic disc
size, there was no correlation between OCT RNFL
thickness and fundus CDR in all sectors. After
correcting for disc area, a weak negative correlation
(r = —0.4046, P < 0.05) was observed at the 90°/S2
sector.

Discussion

In this study, we have demonstrated that CNNs
trained for vCDR estimation using standard images
can generalize to UWF and smartphone-based imaging
devices, even though the angle of view and image
quality were drastically different from the training
images. This is partly achieved through postprocess-
ing techniques, including the hole-filling operation and
TTA, which remove noise by averaging over multi-
ple outputs. The developed models perform compara-
bly with the top submissions in the REFUGE 2018
challenge. Among the top three submissions for vCDR
estimation, Team BUCT (rank 3) leveraged two differ-
ent U-Net models to separately segment the OD and
OC, Team CUHKMED (rank 2) utilized an adversar-
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Figure 6. Qualitative results from the detection and segmentation CNNs in each data set. Green bounding box indicates the detected ROI
while the green and black outlines delineate the OD and OC, respectively. The reference vCDR (Ref) and estimated vCDR (Sys) are shown at

the bottom right of each ROl image.

ial learning framework to reduce performance degra-
dation on the testing data set and the final predic-
tion was obtained by an ensemble of five models,
while Team Masker (rank 1) adopted a multiarchitec-
ture approach to train multiple segmentation models
on different subsets of the training data set. Our
automated vCDR estimation system was based on two
U-Net models, one for ROI extraction and another
one for OD/OC segmentation. The main advantage
of this two-stage design is that the ODs are roughly
centered in the ROIs extracted by the first model, which
allows the second model to focus only on delineat-
ing the boundaries of OD and OC instead of learn-
ing both ROI extraction and delineation tasks at the
same time. By decoupling ROI extraction and OD/OC

Downloaded from m.iovs.org on 04/19/2024

delineation tasks, it also provides some degree of
future upgradability where either of the two models
may be swapped out and replaced with an improved
model. It was shown to be robust to different image
qualities and was able to delineate reasonable bound-
aries for OD and OC from images that were deemed
ungradable under the modified SiDRP guidelines for
fundus image quality assessment. The interoperabil-
ity between multiple imaging types allows the same
vCDR estimation system to be deployed to differ-
ent clinical setting with different imaging capability.
Since the CNNs were based on relatively lightweight
ResNet-18 encoders, they can potentially be embedded
directly into a smartphone, allowing real-time vCDR
estimation in an offline fashion. This will be useful
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Figure 7. Qualitative results of the OD/OC boundaries on ungrad-
able smartphone-based images. Green and black outlines delineate
the OD and OC, respectively. The reference vCDR (Ref) and estimated
VCDR (Sys) are shown at the bottom right of each image.

in a large-scale community screening setting, where
the portable imaging devices might be operated by
nonspecialists.

As a relatively new fundus imaging device, the
smartphone-based camera offers greater flexibility
and portability compared to its tabletop counter-
part, which makes it an ideal choice for commu-
nity screening in remote locations. As part of the
study, image quality control was performed against
a widely accepted national standard. However, there
is still a gap in the image quality between tabletop
and portable devices. Image quality is an important
factor for artificial intelligence (Al)-based diagnostic
systems, and some Al-based diagnostic software for

REFUGE (test set) vs reference AMK (UWF) vs reference
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fundus images’®?’ include an image quality assess-

ment algorithm to detect images with insufficient
quality. In terms of vCDR estimation, the quality
of the captured smartphone-based images matters as
the MAE is higher in ungradable images compared
to gradable images. Thus, further effort is required
to improve the quality of smartphone-based images,
such as improved camera sensor and stabilization to
minimize unwanted image artifacts. Additionally, an
automated image quality assessment algorithm may be
developed and embedded directly into smartphone’s
display to guide the image acquisition process in real
time.

The Bland-Altman plot analysis showed that the
developed system achieves a good agreement with the
optometrist’s annotation in both UWF and gradable
smartphone-based images. The results are similar to
previous work on other standard fundus data sets,
which reported a mean difference of 0.0034 and 95%
limit of agreement of —0.2931 to 0.2998.% In addition,
vCDRs estimated for paired UWF and smartphone-
based images show a high degree of agreement in
gradable images, suggesting that portable devices may
be a viable option for vCDR estimation in locations
without access to UWF or a standard fundus imaging
device. For the ungradable images, there was a moder-
ate degree of agreement with the UWF counterpart
(Fig. 9b) and a larger deviation with the reference
values toward lower vCDRs (Fig. 5b). This further
proves that low image quality will degrade the perfor-
mance of vCDR estimation. In addition, the results
in Table 5 suggest that the differences in vCDR estima-
tion performance between the group with PPA and
the group without PPA are statistically insignificant.
Furthermore, as shown in the qualitative results, the
developed models are also reasonably robust against
other confounders such as cotton wool spots (Fig. 10,

AMK (smartphone, gradable) vs reference AMK (smartphone, ungradable) vs reference
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Figure 8.
UWF, and smartphone-based (gradable versus ungradable) images.
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(a-d) Bland-Altman plots comparing the estimated vCDRs of the automated system with optometrists’annotations in standard,
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UWF vs smartphone (ungradable)

Figure 9.
automated system.

+1.96SD:
0.2 o 0.2 775205
+1.96SD: o A °
0.142
0.1 0O 000 O0oO0 0.1 1 o0 00O
o 00 00O0O0 O 0 0O0O0O0O
MEAN: .
« 00 e—e—6—o6—06——-o 0.0 1_MEAN: 0O 00000
& 0.000 0.015
Q o 00 O0O0oO : o o o0 o0 o
£ -0.1 1 o o o0 o -0.1 o0 0 0 O
g 1.965D
g o O D.143 °
g 021 o =0-21 .1.965D: ¢
=] -0.235
-0.3 o -0.3 4 o
o
-0.4 -0.4 o
)
-0.5 —0— : - - . : -0.5 : - : : : : :
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
Mean vCDR Mean VCDR
(a) (b)

(a, b) Bland-Altman plots comparing the vCDRs estimated for the UWF and smartphone-based images using the same

Table 5. MAE of the Estimated vCDRs and Independent t-test Results Comparing the Difference Between

Images With and Without PPA

Characteristic Without PPA (n = 125) With PPA (n =171) t(294) P Value
AMK UWF 0.070 £0.010 0.066 £ 0.009 0.4536 0.6504
AMK smartphone 0.078 £0.014 0.085 £0.012 —0.8568 0.3923

second image) and nerve fiber layer reflection (Fig. 10,
fourth image). However, as illustrated in Figure 11,
the model may fail to delineate accurate OD bound-
aries when the images contain unusual abnormalities
or are underexposed. We termed these abnormalities
found around the optic disc as an anatomic peripap-
illary adversarial lesion (APAL) given that they act as
adversarial signals to the deep learning system while
being naturally occurring anatomic features. While the
issue of underexposure can be resolved by recaptur-
ing the photos, the APAL requires further investigation
(e.g., through better model design or training on more

Ref: 0.40
Sys: 0.45
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Figure 10. Qualitative results on UWF images with PPA.
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images that exhibit such patterns). We will leave this
investigation for future work.

The system developed in this study can be used to
delineate the boundaries of OD and OC automatically,
which enables automatic quantification and extrac-
tion of CDR at different sectors of the fundus image
(Fig. 4a), allowing us to study any potential association
between the sectoral RNFL thickness and sCDR. A
previous study reported that the mean global peripapil-
lary RNFL thickness does not correlate with the CDR
derived from fundus images (r = 0.029; P = 0.858)
in patients with suspected pediatric glaucoma,’® while

Ref: 0.40
Sys: 0.45

Ref:10:50
Sys10:50

©

Ref: 0.60
Sys: 0.50
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Table 6. Pearson Correlation Coefficient of sSCDR Versus RNFL Thickness at Each Sector

sCDR Angle RNFL Sector r PValue r P Value?
0° N2 —0.2041 0.2624 0.0698 0.7091
30° N3 0.0083 0.9640 0.0205 0.9128
60° S1 —0.1550 0.3970 —0.3092 0.0906
90° S2 —0.2302 0.2050 —0.4046 0.024
120° S3 —0.0206 0.9110 0.1384 0.4578
150° T1 —0.1149 0.5312 0.1016 0.5867
180° T2 —0.0077 0.9667 0.0032 0.9862
210° T3 —0.0739 0.6878 —0.0089 0.962
240° 11 0.1766 0.3336 0.2756 0.1334
270° 12 0.0574 0.7549 0.1032 0.5807
300° 13 —0.1973 0.2791 —0.2022 0.2754
330° N1 0.0177 0.9232 0.0686 0.7137

Bold type indicates statistical significance.

2Results of partial Pearson correlation corrected for disc area.

another study reported a weak correlation between
average RNFL thickness in Stratus OCT with CDR
derived from slit-lamp examination (r = —0.58918).%
In contrast, our sectoral-based study reveals no corre-
lations in all sectors except the 90° sector. To the best
of our knowledge, this study is the first to investigate
the association between the sectoral fundus CDR and
OCT RNFL thickness.

Besides enabling association study on a sectoral
basis, vVCDR or sCDR derived from the automated
system can be combined with other variables such as

Figure 11.
smartphone-based images.
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.

intraocular pressure and visual acuity score to aid clini-
cians in the diagnostic decision-making process, or it
can be feed into an inherently interpretable models
such as a decision tree’® to make decisions in a fully
automated fashion. Under this design, the derivation
of each quantitative measurement that contributes
to a diagnostic decision is traceable and verifiable
through visual inspection of the model outputs. For
example, the OD/OC delineations responsible for
vCDR derivation can be visually inspected to identify/
troubleshoot any failure in the delineation process and

Examples of the failure case. The first two columns correspond to UWF images while the last three columns correspond to



translational vision science & technology

Generalizability of DNNs for vCDR Estimation

rectified before it is used in the diagnostic process.
This is in contrast to regression-based approaches?!-*
where the vCDR is directly estimated in an end-to-
end manner. While the regression-based model allevi-
ates the requirement of pixel-level segmentation masks
during the training phase, its inherent black-box nature
limits the interpretability of the predicted outputs.

This study has a few limitations. First, due to TTA,
18 augmented images were constructed from each
image (four rotations plus two flips for each of the three
resolutions). This resulted in an average processing
time of 0.7 seconds per image, which is 2.7 times longer
compared to 0.26 seconds per image without TTA.
Nevertheless, a subsecond performance of 0.7 seconds
per image is acceptable for a near real-time use case
and could be further improved with better optimiza-
tion and hardware. Second, the system was validated on
a relatively small population that was predominantly
Chinese. Lastly, the correlation study on fundus sCDR
versus OCT RNFL thickness was limited to a small
sample size and nonglaucomatous cases. We believe
that the automated OD/OC detection and boundary
segmentation models will be a valuable tool to encour-
age further studies in this direction.
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