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Purpose: To evaluate the diagnostic performance of a robotically aligned optical coher-
ence tomography (RAOCT) system coupled with a deep learning model in detect-
ing referable posterior segment pathology in OCT images of emergency department
patients.

Methods: A deep learning model, RobOCTNet, was trained and internally tested to
classify OCT images as referable versus non-referable for ophthalmology consultation.
For external testing, emergency department patients with signs or symptoms warrant-
ing evaluationof theposterior segmentwere imagedwith RAOCT. RobOCTNetwas used
to classify the images. Model performance was evaluated against a reference standard
based on clinical diagnosis and retina specialist OCT review.

Results: We included 90,250 OCT images for training and 1489 images for internal
testing. RobOCTNet achieved an area under the curve (AUC) of 1.00 (95% confidence
interval [CI], 0.99–1.00) for detection of referable posterior segment pathology in the
internal test set. For external testing, RAOCTwas used to image 72 eyes of 38 emergency
department patients. In this set, RobOCTNet had an AUC of 0.91 (95% CI, 0.82–0.97), a
sensitivity of 95% (95% CI, 87%–100%), and a specificity of 76% (95% CI, 62%–91%). The
model’s performance was comparable to two human experts’performance.

Conclusions: A robotically aligned OCT coupled with a deep learning model demon-
strated high diagnostic performance in detecting referable posterior segment pathol-
ogy in a cohort of emergency department patients.

Translational Relevance: Robotically alignedOCT coupledwith a deep learningmodel
may have the potential to improve emergency department patient triage for ophthal-
mology referral.

Introduction

A growing body of literature has applied machine
learning and deep learning techniques to diagnose
posterior segment diseases. Deep learning has been
used to detect diabetic retinopathy, macular degenera-

tion, and papilledema in both fundus photographs and
optical coherence tomography (OCT) images, as well
as to make referral recommendations in ophthalmol-
ogy settings.1–12 These approaches have the potential
to increase efficiency in patient care, improve diagnos-
tic accuracy, and expand access to critical screening
services.13,14
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One major limitation of utilizing deep learning
for automated screening and evaluation is that deep
learning algorithms generally require high-quality
input data, which often necessitates the involve-
ment of specialized personnel, such as ophthalmic
photographers, to gather data.15 Workforce limita-
tions make implementing these technologies in
many settings infeasible: for example, as of 2022,
there are only 60,000 ophthalmic technicians
in the United States, whereas the U.S. popula-
tion was estimated to require between 72.9 and
142.6 million eye visits annually in 2015.16,17 As
the U.S. population ages and the prevalence of
eye conditions increases with age, the growing
population-level need for eye care will likely exacer-
bate the existing burden on the limited eye care
workforce.18,19

As one potential solution to human resource limita-
tions, our group recently developed a robotic device
capable of capturing retinal optical coherence tomog-
raphy images via autonomous alignment.20 This robot-
ically aligned optical coherence tomography (RAOCT)
system has the potential to improve care in nonoph-
thalmic settings where access to ophthalmic exper-
tise and equipment is limited, such as the emergency
department. Urgent eye conditions are common, and
improper or delayed diagnosis can lead to perma-
nent visual impairment.21,22 Previous studies have
shown that the accuracy of referral diagnosis from
emergency physicians is low, especially for conditions
affecting the posterior segment of the eye.23,24 We
recently demonstrated that the use of RAOCT images
improved emergency physicians’ sensitivity for retinal
and optic nerve abnormalities from 0% to 69%.25
The diagnostic performance may be further improved
if this imaging modality is combined with a deep
learning model capable of autonomous triage of the
images, which would create a diagnostic image acqui-
sition and interpretation pipeline novel to the litera-
ture.

In this study, we coupled RAOCT imaging with
a deep learning model to classify images as referable
to ophthalmology versus non-referable to ophthal-
mology. Furthermore, prospective study designs
and external testing on data different than the
data used for model development are essential to
ensure optimal generalizability and reliability of
deep learning models.26,27 Therefore we prospec-
tively evaluated this system in a diverse population of
patients from the emergency department. Our objec-
tive was to determine whether such a system could
differentiate referable versus non-referable posterior
segment pathology among emergency department
patients.

Methods

Study Design

This studywas a training, internal testing, and exter-
nal testing study designed to evaluate a deep learning
model for classifying retinal OCT images as referable
versus non-referable for ophthalmology consultation.
Any pathology necessitating evaluation by an ophthal-
mologist was considered referable. Figure 1 shows our
workflow diagram. In short, two publicly available
OCT datasets and a set of images of ophthalmology
clinic patients previously obtained with our RAOCT
system were used for training and internal testing
of the deep learning model. For external testing, we
applied the model to a set of RAOCT images prospec-
tively obtained from a cohort of emergency depart-
ment patients. Institutional Review Board approval
was obtained from Duke University. Written informed
consent was obtained from all enrolled study partic-
ipants after explanation of the nature and possible
consequences of the study.

Reporting Guidelines

This manuscript is reported in accordance with
the 2015 updated Standards for Reporting Diagnostic
Accuracy statement. A checklist is provided in Supple-
mentary Table S1.

Training and Internal Testing Datasets

Two publicly available OCT datasets (Kermany et
al.5 and Srinivasan et al.28) and a dataset previously
acquired with our RAOCT system were used for deep
learning model training and internal testing. Supple-
mentary Figure S1 shows representative images from
the three datasets. The dataset from Kermany et al.5
contained 84,484 temporal-nasal foveal OCT B-scans
(Spectralis OCT; Heidelberg Engineering, Heidelberg,
Germany) obtained as part of routine clinical care
at five institutions in the United States and China.5
This dataset included images of normal retinas, as well
as examples of choroidal neovascularization, macular
edema, and drusen.

The dataset adapted from Srinivasan et al.28
contained 1824 B-scans from volumetric OCT imaging
(Spectralis OCT) obtained at three U.S. academic insti-
tutions for research, which included 15 volumes with
dry age-related macular degeneration and 15 volumes
with diabeticmacular edema. Because pathologies were
potentially located only in parts of the volumes, two
ophthalmologists experienced in the interpretation of
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Figure 1. Study workflow diagram. A convolutional neural network pretrained on ImageNet data was retrained on two publicly available
datasets5,28 and a set of images previously obtained with our RAOCT system from ophthalmology clinic patients to create a deep learning
model that classified OCT images as referable versus non-referable for ophthalmology consultation. A portion of these data were reserved
for internal testing. We then externally tested the model on RAOCT images acquired from a cohort of emergency department patients with
symptoms or signs that warranted evaluation of the posterior segment of the eye. For model evaluation, the primary outcome was AUC for
detecting referable posterior segmentpathology. AMD, age-relatedmacular degeneration; CNV, choroidal neovascularization; DME, diabetic
macular edema.

OCT images reviewed all B-scans of the volumes and
excluded any B-scans without clear evidence of pathol-
ogy from the dataset.

The dataset previously obtained with our RAOCT
system included 5431 B-scans from volumetric OCT

imaging of patients with a broad range of posterior
eye diseases seen at the Duke Eye Center and subjects
with normal retinas. Supplementary Table S2 describes
the demographic and clinical characteristics of this
dataset.
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All posterior eye pathologies present in the three
datasets above were considered referable to ophthal-
mology. In terms of data partition, the dataset from
Kermany et al.5 presented images readily divided into
a training subset and a test subset. We used the images
from their training subset for training and images from
their test subset for internal testing. Both the dataset
from Srinivasan et al.28 and our own dataset were split
randomly into training and internal testing subsets in a
14:1 ratio.

We additionally performed a sensitivity analysis
excluding images derived from the RAOCT system
from the training and internal test sets to assess whether
including images obtained with the RAOCT system
in training improved model performance in external
testing on RAOCT images acquired in a different clini-
cal setting.

Deep Learning Model

Our deep learning model used OCT B-scan images
as its input and classified them as referable versus
non-referable for ophthalmology consultation. Using
Tensorflow,29 we adapted an Inception V3 convolu-
tional neural network pretrained on ImageNet data.30
We used Inception V3 because it has previously been
shown to have better performance than comparative
convolutional neural networks such as ResNet-50 and
VGG-19 and similar performance to ResNet-101,31
and because Kermany et al.,5 whose data make up
the bulk of our training data, successfully used Incep-
tion V3 in their study. The layer “mixed6” was used to
extract image features. The image features were then
processed by a fully connected layer, a dropout layer,
and a softmax output layer, which were the only train-
able layers when retraining on the training set. Each
input image was resized to 300 × 300 pixels to corre-
spond to the default input size of the Inception V3
network and to maximize the tradeoff between batch
size and image resolution.32 The model parameters
were trained with a RMSProp optimizer with a learn-
ing rate of 0.0001 in batches of 15 images. Train-
ing was set to run for 100 epochs with an additional
early stopping procedure based on a threshold for
training accuracy to avoid overfitting to the train-
ing set. Data augmentation was performed on the
training set to increase the size and diversity of the
dataset and tominimize bias arising fromheterogeneity
in imaging techniques. Data augmentation techniques
included rotation, horizontal flip, width shift, height
shift, shearing, and zooming. Manual hyperparameter
search and optimization were performed. Training was
conducted with an AMD Ryzen Threadripper 2950
× 16-Core central processing unit, using an NVIDIA

RTX 3090 graphics processing unit, with 32 GB avail-
able in random access memory.

External Testing in an Emergency
Department Population

For external testing, a cohort of adult patients
presenting to the DukeUniversity Hospital Emergency
Department (ED), a Level I trauma center, between
November 2020 and October 2021 were prospec-
tively imaged with our RAOCT system after providing
written consent. These patients presented with acute
visual changes, headache, or focal neurologic deficit(s),
and received an ophthalmology consult. Patients with
hemodynamic instability, penetrating trauma to the
eye, or inability to follow commands required for the
OCT imaging procedure were excluded. Aside from
these inclusion and exclusion criteria, patients were not
excluded from enrollment or final analysis based on
severity of pathology or ultimate diagnosis, or whether
such a diagnosis can be made based on OCT imaging
alone. The patients’ medical records were reviewed for
patient age at presentation, legal sex, and self-identified
race. We performed an a priori sample size calculation
on the patient level to develop a target for number of
patients to enroll. To detect a minimum area under the
curve (AUC) of 0.80 based on conventional thresholds
and prior literature for the clinical application,33–35 34
patients would be needed to have 90% power at a signif-
icance level of 0.05.

The RAOCT platform used for imaging has been
described previously.20 In brief, we used a custom
swept-source OCT system (100 kHz A-scan rate and
λ0 = 1040 nm) with 32° posterior eye field of view
scanning optics mounted on a robot arm (Universal
Robots UR3e). OCT volumes of 900 pixels × 250
pixels × 750 pixels (A-scans × B-scans × depth) were
obtained. Both eyes of the patients were imaged unless
an ocular condition limiting the utility of any ocular
imaging was present. Patients sat freely in front of the
system without chin or head rests, and the RAOCT
system automatically located the eye of interest and
maintained its alignment to the pupil (see Supplemen-
tary Video S1). A research technician was present for
patient safety and to press a button to trigger the acqui-
sition of the OCT scan. The technician had no clini-
cal training and no experience or training working as
an ophthalmic technician. The technician had train-
ing in human subject research, basic instruction in
operation of the system including deployment of an
emergency stop for the robotic system, and ready access
to additional support if needed for patient safety.
Clinical staff involved in patient enrollment were not
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involved in image acquisition. Volumetric OCT images
including both macular and optic nerve regions were
acquired in less than two seconds. A single central
B-scan for each eye was selected for external testing of
the deep learning model. The model was only provided
the central foveal B-scan of each patient. Deep learning
image analyses occurred asynchronously after image
capture and did not affect real-time patient care.

To establish the reference standard (diagnostic
ground truth labels), we first retrospectively extracted
from medical records the clinical diagnosis made by
the ED consulting ophthalmologist based on examina-
tion. In addition, a retina specialist, who was masked
to all patient data, reviewed the collected volumet-
ric RAOCT images for presence or absence of refer-
able pathology on imaging and noted any specific
pathology present. If there was a disagreement between
the ED consulting ophthalmologist’s clinical diagnosis
and the retina specialist’s OCT assessment, a second
senior retina specialist with extensive experience in
OCT reading made the determination of whether a
referable pathology was present or absent based on
OCT and noted any specific pathology present.

In addition to evaluating model performance
against the reference standard, two human experts
(retina specialists) reviewed the central foveal B-scan
images alone in the external testing set (i.e., without
volumetric OCT or other clinical information) to
classify each image as referable versus non-referable
for ophthalmology consultation. This experiment was
designed to compare the model versus human expert
performance under equivalent testing conditions, as
the model was only provided the central foveal B-scan
images.

Statistical Analysis

The deep learning model was evaluated against
ground truth labels for training, internal testing,
and external testing. Receiver operating character-
istic (ROC) and precision-recall (PR) curves were
generated using classification probabilities of refer-
able vs. non-referable. The primary performance
metric was the AUC. The PR curves were summa-
rized by average precision (AP). For external testing
in emergency department patients, sensitivity, speci-
ficity, positive predictive value (PPV), and negative
predictive value (NPV) were also calculated. These
metrics were determined based on a point on the
ROC curve selected to prioritize increased sensitiv-
ity, without unduly compromising specificity (i.e., the
point where increasing sensitivity further would result
in dramatic decreases in specificity), because the clinical
application was to detect referable pathology. Gener-
ally, under-referral has more negative consequences

for patients (i.e., missing a vision-threatening condi-
tion) than over-referral.36 In a secondary analysis,
to evaluate the model performance in comparison
with human expert performance under comparable
conditions (when human experts were provided with
only the central foveal B-scan in the absence of any
clinical information or volumetric OCT information),
we calculated the human experts’ sensitivity, speci-
ficity, PPV, and NPV for detecting referable poste-
rior segment pathology. Bootstrapping was used to
estimate 95% confidence intervals (CI) of the perfor-
mance metrics. If the estimate of a given performance
metric was 0% or 100%, the exact binomial methodwas
used instead. Additionally, post-hoc subgroup analy-
ses were performed for the most common conditions.
Because the model and the human experts were only
tasked with classifying images as referable versus non-
referable and not tasked to identify specific conditions,
only the true-positive count and the false-negative
count for each condition can be deduced. Therefore,
sensitivity was the only metric calculated in the analysis
for specific conditions. Analysis was performed using
Python (version: 3.8.5), and the “scikit-learn” library
was used to calculate the performance metrics.37

Heatmap Generation

In an attempt to interpret the model’s approach
to image classification, the integrated gradients
method was used to generate heatmaps showing
areas contributing most to the model classifica-
tion.38 We used the integrated gradients method
because, compared with class activation methods,
the integrated gradients method has been shown to
provide more accurate localization and coverage of
pixels of importance to the model and because this
method has previously been used for an interpretable
artificial intelligence framework in ophthalmology.14,38
The contributions were measured relative to a baseline
black image intended to provide no information into
the model. To visualize the underlying morphology,
we overlaid the heatmaps on the OCT images as
semitransparent color heatmaps. In general, heatmaps
are more useful for images predicted to have referable
pathology than images predicted to be non-referable,
as in images predicted to be non-referable, the heatmap
is the same for the prediction from the baseline (entirely
black) image, as demonstrated in prior work.14

Results

We included 90,250 OCT images for training
(59,967 referable and 30,283 non-referable) and 1489
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images for internal testing (961 referable and 528
non-referable). As shown in Figure 1, for the exter-
nal testing cohort, 50 patients were approached for
enrollment. Seven patients declined participation, and
two were discharged from the emergency department
before study procedures could be completed; three
further patients were excluded due to technical errors.
Therefore a total of 72 eyes of 38 emergency depart-
ment patients were included in the external testing
set. Patient demographic and clinical characteristics as
well as reference standard diagnoses for the external
testing set are shown in Table 1. The median age was
58 (interquartile range, 37–66), and 47% were female.
Thirty-eight (53%) had referable pathology, includ-
ing a broad range of posterior segment pathologies
such as retinal artery occlusion, optic nerve edema,
retinal detachment, and acute retinal necrosis (Table
1). No adverse events occurred because of the perfor-
mance of the index test (RobOCTNet) or the reference
standard.

Figure 2 shows theROCandPR curves for the train-
ing, internal testing, and external testing sets. In the
internal test set, the model had an AUC of 1.00 (95%
CI, 0.99–1.00) and an AP of 1.00 (95% CI, 1.00–1.00)
for detection of referable posterior segment pathology.
For external testing, the model had an AUC of 0.91
(95% CI, 0.82–0.97), an AP of 0.88 (95% CI, 0.76–
0.98), a sensitivity of 95% (95% CI, 87%–100%), a
specificity of 76% (95% CI, 62%–91%), a PPV of 82%
(95% CI, 70%–92%), and an NPV of 93% (95% CI,
83%–100%).

We conducted post-hoc subgroup analyses for the
most common conditions in the external testing set.
Among eyes with optic nerve edema (n = 9) and eyes
with epiretinal membrane (n = 10), our model had
a sensitivity of 100% for referable posterior segment
pathology. Among eyes with staphyloma or peripapil-
lary atrophy (n = 10), the model had a sensitivity of
90%. Among the eyes with drusen (n = 11), the model
had a sensitivity of 91%. Of note, in the single eye with
drusen where the model failed to detect pathology, the
drusen in question was not contained in the central
foveal B-scan provided to the model.

Table 2 compares the performance of RobOCT-
Net with the performance of two human experts who
reviewed the same central foveal B-scan images as
RobOCTNet. In summary, RobOCTNet performed
comparably to both experts. Of note, expert 2 consid-
ered the images for three (4%) eyes ungradable because
of quality; for four (6%) additional eyes, expert 2
needed clinical history to decide. However, expert 1
was able to grade all images. Figure 3 compares the
sensitivities of the model for the most common condi-
tions with those of the human experts, demonstrat-

Table 1. Demographic and Clinical Characteristics of
Patients Included in the External Testing Set

Total Number of Patients 38
Total number of eyes 72
Median age, years (interquartile range) 58 (37-66)
Sex

Male 20 (53%)
Female 18 (47%)

Race
Caucasian/White 27 (71%)
Black/African American 7 (18%)
Asian 2 (5%)
Caucasian/White and Black/African

American
1 (3%)

Not reported/declined 1 (3%)
Presenting symptoms/signs*

Acute visual changes 36 (95%)
Headache 18 (47%)
Focal neurologic deficit(s) 2 (5%)

Non-referable per reference standard 34 (47%)
Referable per reference standard† 38 (53%)

Drusen 11 (15%)
Staphyloma or peripapillary atrophy 10 (14%)
Epiretinal membrane 10 (14%)
Optic nerve edema 9 (13%)
Optic atrophy 4 (6%)
Retinal artery occlusion 3 (4%)
Retinal vein occlusion 2 (3%)
Non-proliferative diabetic retinopathy 2 (3%)
Grade 2 hypertensive retinopathy 2 (3%)
Geographic atrophy 2 (3%)
Retinal detachment 1 (1%)
Acute retinal necrosis 1 (1%)
Chorioretinal lesion of unknown

significance in the setting of
contralateral endogenous
panophthalmitis

1 (1%)

Intraretinal fluid in the setting of giant
cell arteritis

1 (1%)

*Some patients had more than one sign/symptom, result-
ing in a sum greater than 100%.

†Some eyes had more than one diagnosis.

ing comparable or potentially superior performance of
RobOCTNet.

Heatmaps provided pixel-based maps that demon-
strated the contribution of each pixel in the OCT
images to predict the presence of referable pathology.
Representative examples of these heatmaps are shown
in Figure 4. In general, heatmaps highlighted areas of
clinical importance in OCT images.
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Figure 2. Receiver operating characteristic curves (left) and precision-recall curves (right) for the (A) training set, (B) internal testing set,
and (C) external testing set. For detecting referable posterior segment pathology, the model had an AUC of 0.99 (95% CI, 0.99–0.99) and an
AP of 0.99 (95% CI, 0.99–0.99) in the training set; an AUC of 1.00 (95% CI, 0.99–1.00) and an AP of 1.00 (95% CI, 1.00–1.00) in the internal
testing set; and an AUC of 0.91 (95%CI, 0.82–0.97) and an AP of 0.88 (95%CI, 0.76–0.98) in the external testing set of emergency department
patients.
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Table 2. Performance Metrics of RobOCTNet Versus Human Expert Graders (Retina Specialists)

Number of Eyes Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

RobOCTNet 72 95% (87%–100%) 76% (62%–91%) 82% (70%–92%) 93% (83%–100%)
Expert 1 72 68% (53%–82%) 100% (90%–100%) 100% (87%–100%) 74% (60%–86%)
Expert 2 65* 87% (74–97%) 44% (26–63%) 69% (54–81%) 71% (50–93%)
RobOCTNet 65* 95% (87–100%) 74% (57–89%) 84% (72–94%) 91% (78–100%)

*Expert 2 considered the images for three eyes ungradable because of quality and needed clinical history tomake decisions
about four additional eyes, soonly 65eyeswere included in the analysis of expert 2’s performance.Wepresent theperformance
of RobOCTNet on both the full set of 72 eyes and the reduced set of 65 eyes for comparison with expert 2’s performance.

Figure 3. Bar graphs comparing the sensitivities of RobOCTNet with the sensitivities of two human experts (retina specialists) for themost
common conditions in the external testing set.

In a sensitivity analysis where RAOCT images were
excluded from the training and internal test sets, the
model performed comparably in internal testing (AUC
= 1.00; 95% CI, 1.00–1.00; AP = 1.00; 95% CI, 1.00–
1.00). However, in external testing, the model did not
perform as well as the model trained on RAOCT
images: AUC was 0.85 (95% CI, 0.76–0.94), AP was
0.83 (95% CI, 0.68–0.95), sensitivity was 89% (95% CI,
80%–98%), specificity was 68% (95% CI, 51%–83%),
PPV was 76% (95% CI, 63%–88%), and NPV was 85%
(95% CI, 71%–97%).

Discussion

Our study coupled deep learning and robotics
to identify referable optic nerve and retinal pathol-
ogy for patients presenting to the emergency depart-
ment with symptoms or signs warranting evaluation
of the posterior segment. We showed that our deep
learning/RAOCT system was effective at classifying
presence versus absence of referable posterior segment
pathology, with a sensitivity of 95% and a specificity of
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Figure4. Deep learningheatmapsoverlaidon representativeOCT imageswithposterior segmentpathologies. Theheatmapsdemonstrate
the relative contributionof eachpixel to themodel’s classificationof these images as referable through integratedgradient attribution scores,
ranging from0 (darkpurple) to 1 (bright yellow). Brighter areas represent greater contributions. Heatmapswere generatedwith the integrated
gradientsmethod. In general, heatmaps aremore useful for images predicted to have referable pathology than images predicted to be non-
referable, because in images predicted to be non-referable, the heatmap is the same for the prediction from the baseline (entirely black)
image.

76% when evaluated on an independent, prospectively
enrolled cohort of emergency department patients.
Furthermore, our system’s performance was compara-
ble to the performance of two human experts.

Our results have important implications in the
context of existing models of emergency eye care.

The current standard of care instrument, the direct
ophthalmoscope, has very poor performance in the
hands of emergency physicians; in previous studies,
only 4% to 20% of patients with clear indication
for fundus examination actually received one in the
ED.39,40 Even when patients did receive a fundus
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examination, a large-scale study showed that the sensi-
tivity for acute pathology was extremely poor (0% in
cases where ED providers were not already aware of
an objective fundus finding identified at another facil-
ity).40

For screening a diverse range of posterior segment
pathologies, our system compares favorably with exist-
ing approaches to improve ED eye care. For example,
emergency physician review of fundus photographs
obtained by a trained nurse practitioner showed a
sensitivity of 46% and a specificity of 95% for
relevant posterior segment pathologies.35 Our system
also compares favorably with ocular ultrasound, which
has been shown to be very sensitive (94.2%) and
specific (96.3%) for the diagnosis of retinal detach-
ment but only moderately sensitive (82%) and specific
(73%) for the diagnosis of papilledema.41,42 Addition-
ally, both fundus photography and ocular ultrasonog-
raphy require specialized training in (or dedicated
personnel for) image acquisition and interpretation.
Key advantages of our system include the lack of
specialized training for a technician/provider to acquire
images, improved ability of OCT to evaluate three-
dimensional structural changes in the retina and optic
nerve compared with two-dimensional ocular ultra-
sound and fundus images, and automated classification
of images, thereby reducing the requirements for clini-
cian time, knowledge, and experience.

RobOCTNet may be a useful adjunct to assist
emergency physicians with clinical decision-making. A
previous study conducted by our group demonstrated
that retinal OCT imaging could substantially improve
emergency physicians’ sensitivity for abnormalities in
the posterior segment of the eye, compared with their
existing standard of care examination, direct ophthal-
moscopy.25 These results complement the results from
the present study because deep learning has the poten-
tial to help emergency physicians further improve their
diagnostic accuracy based on OCT. Simultaneously,
this prior study demonstrated that emergency physi-
cians couldmake reasonable referral decisions indepen-
dent of clinical decision support tools, should they
disagree with the model classification.

The performance of RobOCTNet in detecting refer-
able posterior segment pathology was comparable
to the performance of two human experts perform-
ing the same task under the same condition (i.e.,
reviewing central foveal B-scans alone). Interestingly,
expert 2 considered three (4%) central B-scan images
ungradable because of quality, but expert 1 was able
to grade these images, suggesting heterogeneity in
clinician assessment of OCT images. Additionally,
expert 2 thought clinical history was needed to make
decisions about four central B-scan images, empha-

sizing the importance of clinical history in making
referral decisions for some clinicians. These results
highlight avenues for future work in deep learning-
based studies, suggesting that models incorporating
multimodal information (imaging and history) may be
important.

The heterogeneity of diagnoses included in our
external testing set is novel compared with many
prior studies using deep learning/machine learn-
ing1,2,4,5,14,28,43; furthermore, our external testing set
included patients with a broad range of severity and
acuity of posterior segment pathology. Most of these
studies have focused on accurately classifying images
for a single condition or a few selected conditions,
such as diabetic retinopathy and macular degenera-
tion.2,5,14,28,43 By contrast, we applied our deep learn-
ing model to accurately detect a diversity of patholo-
gies, including pathologies not represented in the
training set. For example, our model successfully
identified eyes with optic nerve edema as containing
referable pathology (100% sensitivity), despite having
not been trained on any OCT image of optic nerve
edema. We hypothesize that despite training on a
limited set of pathologies, the deep learning model was
able to recognize morphologies shared between differ-
ent retinal and optic nerve pathologies. For example,
the heatmap suggests that the model was able to recog-
nize fluid in the retina in the context of papilledema,
despite the lack of representation of papilledema in
the training set. The ability of deep learning models to
recognize generalizable image characteristics is a major
driver behind their potential utility when applied to
data different than their training data. These findings
suggest future directions for deep learning in ophthal-
mology, which could build on the algorithm’s ability to
potentially approach problems in ways different than
humans, address diverse clinical problems, and even
reveal patterns unknown to human experts.44,45

Another key takeaway is the coupling of deep
learning and robotics. Although many robotic systems
use integrated machine learning systems to perform
functions such as environmental feature detection
and movement coordination,46–49 we are not aware
of integration of machine learning and robotics to
achieve automated image acquisition and diagno-
sis in ophthalmology. This approach has the poten-
tial to help non-eye specialists, such as emergency
physicians, overcome the challenge of evaluating eye
conditions and facilitate effective and efficient ophthal-
mology referrals, because the system reduces the
requirements for specialty expertise in both image
acquisition and interpretation. In the context of
the current state of eye care in the ED setting,
where both over-triage and under-triage are unfortu-
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nately commonplace,23,24,36,50 such a system combin-
ing robotics and deep learning could substantially
improve ED throughput efficiency without impairing
safety.

Our study has limitations. First, our training data
were composed primarily of single OCT B-scans and
were supplemented with a small number of volumet-
ric OCT images. For external testing, we provided
only central foveal B-scans in the OCT volume to
the model. Although this approach is consistent with
prior studies,5,51–53 there may be pathologies that are
not captured in a central foveal B-scan.54 Indeed, the
only case of drusen our model missed was absent in
the central foveal image supplied to RobOCTNet, and
the human experts also did not detect any pathology
when reviewing this image (Supplementary Fig. S2).
Large training sets of volumetric data would allow
for volumetric-to-volumetric training, which could
improve diagnostic performance.26 We also did not
preprocess our images with segmentation. Although
this segmentation-free approach has advantages such
as eliminating bias from segmentation errors and
minimizing preprocessing steps,55 recent studies have
shown that segmentation-based homogenization of
images could improve model performance.56,57

Furthermore, although appropriately powered for
our primary outcome of interest, our external testing
cohort is a small cohort of patients enrolled in the ED
of a single, large academic medical center, so it is possi-
ble that this patient population may not be general-
izable to other settings, particularly to settings where
there is a greater proportion of patients with milder
retinal pathology.

Additionally, it is not immediately clear how our
systemwould fit into real-world EDworkflows, because
this study was conducted for research purposes only
and the results were not communicated to providers
for real-time clinical care. The RAOCT system used
in this study is an investigational device approved only
for research use, and therefore we were restricted from
using it to directly alter patient care. Likewise, the
deep learning model has not been previously validated,
and applying it directly to patient care could have
negative consequences for patient safety. Future work
can explore the implementation science of applying this
study to real-world patient care, including immediate
triage at the point of image capture, which was not
explored in this study. Last, although heatmaps provide
some insight into the model, they have been shown to
oversimply the process by which deep learning systems
work and should be interpreted with caution.58

Our study has several strengths. First, unlike many
studies that did not validate their deep learning models
in different populations,27 we externally tested our

model using an independent dataset prospectively
acquired in settings and under conditions that played
no role in model development. This is considered
the gold-standard for model evaluation, because it
has strong implications for generalizability of models
to broader clinical scenarios.27,59 Second, the diver-
sity of pathologies represented in the external testing
set, including pathologies on which the deep learn-
ing model was never trained, suggests that our results
may be generalizable to a broad range of posterior
eye pathologies. Third, our use of a reference standard
that considered both clinical diagnosis and indepen-
dent OCT review by two masked retina specialists
increases the likelihood that our reference standard for
model evaluation was accurate. Trustworthy labels are
considered a core foundation of successful deployment
of deep learning methods.60 Our method minimizes
bias from individual clinicians by using complementary
clinical diagnosis and OCT information in tandem.
Fourth, we used training data from a diverse range
of sources, clinical settings, and OCT systems, which
allowed us to create a broadly generalizable model.
Importantly, most of our training data were publicly
available, which obviated the need for potentially cost-
prohibitive acquisition of a large amount of training
data. Finally, our study design to compare the model
with two human experts performing the task under
comparable conditions was innovative and offered
important insights about how human experts make
referral decisions.

Future research could use volumetric OCT train-
ing data to further enhance the ability of deep learning
models to analyze OCT data in the context of neigh-
boring B-scans. Ensemble stacking approaches are
likewise promising for integrating multiple (volumet-
ric) OCT images to perform classification on the
volume level.61 However, these approaches will require
a large amount of high-quality volumetric OCT data,
which are costly to obtain and are scarce in the
public domain. Increasing the availability and accessi-
bility of such data may enable successful adoption of
these approaches. Additionally, opportunities remain
to evaluate the performance of our robotics-deep learn-
ing system in the context of real-world patient care,
including its cost-effectiveness.

In conclusion, this study showed that combin-
ing a robotically aligned OCT system with a deep
learning model, RobOCTNet, could potentially facili-
tate accurate detection of referable posterior segment
disease among patients presenting to the emergency
department. This work demonstrated the potential of
coupling robotics with machine learning to improve
emergency patient triage for ophthalmology referral.
Future research should address key limitations of
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this study, including incorporating greater amounts of
volumetric OCT training data and clinical information,
which may result in improved model performance.
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