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Practice on perceptual tasks can lead to long-lasting,
stimulus-specific improvements. Rapid stimulus-specific
learning, assessed 24 hours after practice, has been
found with just 105 practice trials in a face identification
task. However, a much longer time course for
stimulus-specific learning has been found in other tasks.
Here, we examined 1) whether rapid stimulus-specific
learning occurs for unfamiliar, non-face stimuli in a
texture identification task; 2) the effects of varying
practice across a range from just 21 trials up to 840
trials; and 3) if rapid, stimulus-specific learning persists
over a 1-week, as well as a 1-day, interval. Observers
performed a texture identification task in two sessions
separated by one day (Experiment 1) or 1 week
(Experiment 2). Observers received varying amounts of
practice (21, 63, 105, or 840 training trials) in session 1
and completed 840 trials in session 2. In session 2,
one-half of the observers in each group performed the
task with the same textures as in session 1, and one-half
switched to novel textures (same vs. novel conditions).
In both experiments we found that stimulus-specific
learning – defined as the difference in response accuracy
in the same and novel conditions – increased as a linear
function of the log number of session 1 training trials
and was statistically significant after approximately 100
training trials. The effects of stimulus novelty did not
differ across experiments. These results support the idea
that stimulus-specific learning in our task arises
gradually and continuously through practice, perhaps
concurrently with general learning.

Introduction

Perceptual learning refers to the improvement in
performance in perceptual tasks that occurs as a result
of practice (Fiorentini & Berardi, 1981; Ball & Sekuler,
1987; Karni & Sagi, 1991; Ahissar & Hochstein,
1996; Hussain, Sekuler, & Bennett, 2009b). It often
is long-lasting (Ball & Sekuler, 1982; Karni & Sagi,
1993; Adini, Sagi, & Tsodyks, 2002; Hussain, Sekuler,
& Bennett, 2011; Yashar, Chen, & Carrasco, 2015)
and exhibits some degree of specificity for the stimuli
used during training (Dresslar, 1894; Zwislocki, Maire,
Feldman, & Rubin, 1958; Ball & Sekuler, 1982; Karni &
Sagi, 1991; Poggio, Fahle, & Edelman, 1992; Ahissar &
Hochstein, 1996; Hussain, Sekuler, & Bennett, 2009a;
Jeter, Dosher, Liu, & Lu, 2010; Hussain et al., 2011). In
many tasks, perceptual performance improves rapidly
during the first several trials and then improves more
slowly over hundreds and sometimes thousands of
trials (Doane & Alderton, 1996; Karni & Bertini, 1997;
Ortiz &Wright, 2009; Hussain et al., 2009b). Some have
suggested that the rapid initial changes in performance
are due to participants learning about the task (Karni
& Bertini, 1997; Karni et al., 1998; Saffell & Matthews,
2003; Wright & Fitzgerald, 2001; Ortiz &Wright, 2009),
whereas the slower, subsequent changes in performance
reflect stimulus-specific learning (Ramachandran
& Braddick, 1973; Fiorentini & Berardi, 1981;
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Ball & Sekuler, 1987; Karni & Sagi, 1991; Poggio
et al., 1992; Fahle, Edelman, & Poggio, 1995; Ahissar
& Hochstein, 1996). Ahissar & Hochstein (1997),
for example, proposed that general learning emerges
first and is used as a guide for later stimulus-specific
learning.

Nevertheless, performance in a wide variety of tasks
is approximately a power or exponential function of
practice (Heathcote, Brown, &Mewhort, 2000). In such
cases, response accuracy is approximately proportional
to the logarithm of the number of practice trials and
there are no obvious discontinuities in the learning
curve that might indicate fast and slow phases of
learning (Dosher & Lu, 2005; Dosher & Lu, 2007;
Hussain et al., 2009b). Such findings suggest that
stimulus-specific learning may begin right at the start
of practice, perhaps concurrently with general learning
about the task. One way of testing this idea is to vary
the amount of practice before participants switch to
novel stimuli. If stimulus-specific learning begins at
the start of training, then we would expect the effect
of stimulus novelty (i.e., the difference in performance
between groups who see the same versus novel stimuli)
in the test session to increase as a monotonic function
of the number of training trials, and studies with
sufficient statistical power would find a statistically
significant effect of novelty in groups that receive
relatively few training trials.

The results of studies using this method have
been mixed. Jeter et al. (2010) found that learning
in an orientation discrimination task generalized to
novel stimuli early on in practice (after approximately
1,200 trials performed in one day) and that stimulus
specificity emerged only after extensive training (over
7,000 trials performed over several days), with less
specificity after intermediate amounts of practice. On
the other hand, Hussain, McGraw, Sekuler, & Bennett
(2012) found that 105 and 840 practice trials in a
1-of-10 face identification task produced equivalent
amounts of stimulus-specific learning 24 hours after
the initial training. Although the Hussain et al. (2012)
result might reflect specialized learning mechanisms
for faces, similarly rapid stimulus-specific learning
has been found for discrimination of auditory stimuli
in some studies (Hawkey, Amitay, & Moore, 2004;
Wright, Wilson, & Sabin, 2010). Indeed, Wright et al.
(2010) found more stimulus-specific learning with
small than large amounts of practice, contrary to the
work cited earlier. Finally, Aberg, Tartaglia, & Herzog
(2009) found that stimulus-specific learning in a visual
chevron discrimination task depended on how practice
trials were distributed across sessions. Specifically,
stimulus specificity was found with 1,600 practice
trials divided equally into two sessions separated by 1
day, but stimulus generalization was found with 1,600
trials divided equally into four sessions separated by
1 week. Hence, the time course of stimulus-specific

learning seems to depend on the perceptual task and
perhaps on the interval between training and test
sessions.

Given the results suggesting that specificity of
learning depends both on the amount of practice and
the temporal interval between sessions, and to test
whether the early specificity found for faces is found
for identification tasks more generally, we decided
to conduct the same experiment as Hussain et al.
(2012) with two variations. We used the same task
(1-of-10 identification), but with non-facial stimuli,
namely, random textures, which are more in line with
stimuli used in other studies. Additionally, we evaluated
learning with two different intervals between sessions:
1 day (Experiment 1), and 1 week (Experiment 2).
Finally, we sought to provide a more detailed analysis
of the time course of rapid learning by measuring the
effects of 21, 63, 105, and 840 practice trials (i.e., two
more conditions than were tested by Hussain et al.,
2012).

Experiment 1 (1-day interval)

Methods

Participants
Ninety-six naïve undergraduate students from

McMaster University (21 males, mean age = 19.7 years,
range = 18–30 years) participated in the experiment.
All participants had normal or corrected-to-normal
visual acuity, and were either paid $10/hour or given
partial course credit for participating. The experimental
protocol for the experiment was approved by the
McMaster University Research Ethics board, and
informed consent was obtained from each participant
prior to the experiment.

Apparatus and stimuli
Stimuli were generated on an Apple Macintosh G4

computer using MATLAB and the Psychophysics
and Video toolboxes (Brainard, 1997; Pelli, 1997).
Stimuli were presented on a 19-inch NEC MultiSync
FE992 display with a resolution of 1,280 × 1,024 pixels
(36 pixels/cm), and a refresh rate of 85 Hz. Participants
viewed the display binocularly from a distance of
88 cm, and a chin/forehead rest was used to stabilize
viewing position. The display had an average luminance
of 82 cd/m2 and was the only source of illumination in
the testing room.

The textures were 2 sets of 10 band-limited noise
patterns created by applying an isotropic, band-pass
(2-4 cy/image) ideal spatial frequency filter to a 256
× 256 pixel (4.6° × 4.6°) patch of Gaussian noise
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(Figure 1A). Each texture was presented at seven
contrast levels that were equally spaced on a logarithmic
scale. The stimuli were embedded in three levels of
static two-dimensional Gaussian noise with contrast
variances of 0.001, 0.01, and 0.1. The 7 stimulus
contrasts and 3 levels of noise yielded a total of 21
stimulus conditions which spanned the sub-threshold
to supra-threshold range.

Procedure
Each participant began the experiment with a

60-second period during which they adapted to the
luminance of the display. The sequence of events in
a trial is illustrated in Figure 1B. Each trial began
with a small, high-contrast fixation point presented
in the middle of the screen for 1 second, followed
by the presentation of a target texture stimulus for
200 ms. After a 200 ms blank screen, a response screen
consisting of thumbnail versions of the 10 possible
textures (each 2.3° × 2.3°) appeared in a 2 × 5 array.
On each trial, the target was selected randomly from
the set of 10 possible textures, and the participant’s
task was to identify the target stimulus by clicking on
1 item in the response screen with a computer mouse.
The response screen remained visible until a response
was made, auditory feedback was provided for correct
(800-Hz tone) and incorrect (200-Hz tone) responses,
and the next trial started immediately following the
auditory feedback. Trial order was randomized, with
the constraint that each combination of Gaussian noise
variance and stimulus contrast was presented only once
in each block of 21 trials. Across trials, the 10 textures
were always shown in the same locations in the response
screen. The average luminance of the display remained
constant throughout the testing procedure.

Design
The experimental design is illustrated in Figure 1C.

Each participant was tested in two sessions separated
by one day. In session 1, participants each completed
1, 3, 5, or 40 21-trial blocks (i.e., 21, 63, 105, or 840
trials, respectively). Twenty-four participants were
assigned to each group. In session 2, all participants
completed 40 blocks, or a total of 840 trials. There was
no delay between blocks (i.e., the session progressed as
a continuous run of trials). In addition, in session 2
one-half of the participants were presented with the
same set of textures seen in session 1 and the other
one-half saw a novel set of textures. In the remainder
of this paper, we refer to these groups as same-21 and
novel-21, same-63 and novel-63, and so on. Note that
participants were not given any preliminary practice on
the task in either session 1 or 2, and that no trials in
either session were discarded as preparatory trials.

Figure 1. (A) The stimuli were two sets of 10 textures (only one
set is shown) that were constructed by filtering white noise with
an isotropic, band-pass spatial frequency filter. Across trials,
textures were presented at seven different contrasts in three
levels of external noise. (B) Each trial consisted of a central
fixation point followed by a single, target texture embedded in
noise and a response screen consisting of noiseless,
high-contrast thumbnail images of the 10 possible textures. The
target was selected randomly on each trial. Observers identified
the target by clicking on a thumbnail image with a computer
mouse. (C) The experiment consisted of two sessions separated
by 1 day (Experiment 1) or 1 week (Experiment 2). In session 1,
participants performed the identification task for 21, 63, 105, or
840 trials (or 1, 3, 5, or 40 21-trial blocks). In session 2, all
participants completed 840 trials: one-half saw the same
textures that were presented in session 1, and one-half saw a
novel set of 10 textures. The symbols representing session 1
training correspond with the symbols used in Figures 6 and 7.
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Results

All statistical analyses were performed with R
(R Core Team, 2021). Effect size (Cohen’s d, f, and
partial f) was calculated using R’s effectsize package
(Ben-Shachar, Lüdecke, &Makowski, 2020), and effects
plots (e.g., Figures 4, 6, and 7) were generated with
the effects package (Fox, 2003). Linear mixed-effects
models were fit to data with the lme4 and lmerTest
packages (Bates, Mächler, Bolker, & Walker, 2015;
Kuznetsova, Brockhoff, & Christensen, 2017). Analyses
on arcsine-transformed and untransformed response
accuracy (i.e., proportion correct) yielded similar results
and therefore we present the analyses of untransformed
data.

Session 1: Accuracy
We first determined if initial performance in session

1 differed across groups. The average proportion of
correct responses during the first 21 trials of session 1,
which ranged from 0.15 to 0.21, is plotted in Figure 2a.
A one-way analysis of variance (ANOVA) found that
the effect of group was not significant, F(7, 88) = 0.33,
p = 0.94, f = 0.16. Analyzing the data with a 2 (novelty)
× 4 (training) ANOVA also found no significant
effects, F � 0.91, p � 0.34, fp � 0.10. Hence, initial
accuracy in session 1 did not differ significantly across
groups.

Session 2: Accuracy, the first 105 trials
We next analyzed accuracy in session 2. To make our

analyses comparable with those reported by Hussain
et al. (2012, i.e., the data in Figure 2, bin 9, in that
paper), we first focused on the proportion of correct
responses in the first 105 trials in session 2.

Figure 2b plots response accuracy on the first 105
trials in session 2 against the number of session 1
training trials separately for groups that saw the same
and novel stimuli in session 2 (henceforth same vs. novel
conditions). The horizontal dashed line in Figure 2b
indicates the average proportion correct in the first 21
trials in session 1 and can be thought of as a baseline:
points lying above the line are indicative of learning,
and stimulus-specific learning is indicated by accuracy
in the same conditions being higher than accuracy in
the novel conditions. Accuracy in all conditions was
well above baseline performance, demonstrating that
learning occurred in all conditions. Also, accuracy in
the same conditions, but not the novel conditions, was a
monotonically increasing function of session 1 training
trials. Hence, the effect of stimulus novelty increased
with increasing session 1 training.

A 2 (novelty) × 4 (training) ANOVA on accuracy in
the first 105 trials on session 2 found significant main

effects of novelty, F(1, 88) = 8.65, p = 0.004, fp = 0.31,
and training, F(3, 88) = 4.32, p = 0.007, fp = 0.38,
and a non-significant novelty × training interaction,
F(3, 88) = 2.36, p = 0.077, fp = 0.28. Planned linear
contrasts found that the linear trend of accuracy across
log-transformed training trials was significant, F(1, 88)
= 12.34, p < 0.001, fp = 0.37, and the linear trend
differed significantly between novelty conditions, F(1,
88) = 6.99, p = 0.009, fp = 0.28. The linear trend was
significant in the same condition, F(1, 44) = 12.5, p <
0.001, f = 0.54, but not in the novel condition, F(1,
44) = 0.77, p = 0.39, f = 0.13. The nonlinear trends
were not significant, F(2, 88) = 0.31, p = 0.74, fp =
0.08, and did not differ significantly between novelty
conditions, F(2, 88) = 0.04, p = 0.96, fp = 0.03. These
trend analyses suggest that average accuracy was
approximately proportional to the log-transformed
number of training trials in the same condition but not
the novel condition, and therefore that the difference
between accuracy in the same and novel conditions
increased with training trials. The results of t tests
comparing accuracy in the same and novel conditions
in each training condition are consistent with this idea:
the effect of novelty was significant in the 840 trials,
t(17.4) = −3.18, p = 0.005, d = 8.33, and 105 trials,
t(21.3) = −2.11, p = 0.046, d = 0.92, conditions, but not
in the 63 trials, t(15.4) = −0.94, p = 0.36, d = 0.48, or
21 trials, t(13.7) = −0.19, p = 0.85, d = 0.10, conditions.
Hence, consistent with Hussain et al. (2012), stimulus-
specific learning was obtained with 105 practice
trials. In addition, the trend analyses suggest that
stimulus-specific learning may begin even earlier during
practice.

Hussain et al. (2012) found that stimulus-specific
learning in a face identification task was equivalent in
participants who received 105 and 840 training trials.
We examined whether this was true for our experiment
by analyzing the data from the 105-trials and 840-trials
conditions with a 2 (novelty) × 2 (training) ANOVA.
Consistent with Hussain et al. (2012), the main effect
of novelty was significant, F(1, 44) = 15.52, p < .001,
f = 0.57, and the novelty × training interaction, F(1,
44) = 1.592, p = 0.21, f = 0.19, was not significant,
indicating that stimulus-specific learning did not
differ significantly with 105 and 840 training trials.
Unlike Hussain et al. (2012) the main effect of
training, F(1, 44) = 1.91, p = 0.17, f = 0.21, was not
significant.

Session 2: Time course and individual differences
So far, our analyses suggest that session 2 accuracy

increased with session 1 training trials in the same
condition but not the novel condition, and that a
statistically significant difference between the same
and novel conditions emerged after approximately
105 training trials. However, those analyses ignored
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Figure 2. Response accuracy from Experiments 1 (left) and 2 (right). (Top) The proportion of correct responses in the first 21 trials in
session 1. (Bottom) Proportion correct in the first 105 trials in session 2 plotted against session 1 training trials and session 2 stimulus
novelty. Error bars in b and d represent ±1 SEM. The horizontal dashed line in each plot indicates the average proportion correct in
the first 21 trials in session 1.

individual differences in visual identification, which
presumably also affected performance in session
2. We therefore reanalyzed our data with a model
that took into account initial session 1 performance
(Figure 2a). Furthermore, to obtain a more detailed

description of how performance in session 2 was
affected by stimulus novelty, training in session 1, and
within-session improvements in session 2, we divided
the 840 session-2 trials into 40 bins each consisting of
21 trials.
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Figure 3. Proportion correct, averaged across participants, measured in 40 21-trial bins in session 2 in Experiment 1 (1-day interval).
Each plot shows data from participants who received different amounts of training in session 1. Solid and dashed lines represent the
predictions of the best-fitting linear mixed-effects model (Equation 1) for the same and novel conditions, respectively. The dotted
horizontal line in each plot indicates the average proportion correct during the first 21 trials in session 1. The × symbol on the far left
of each plot shows average accuracy in the last 21 trials in session 1.

Figure 3 plots the proportion of correct responses
for each 21-trial bin in session 2 separately for each
group. Proportion correct for bin 1 (i.e., the first 21
trials in session 2) is plotted at session 2 trial number
21, proportion correct for bin 2 is plotted at trial
number 42, proportion correct for bin 3 is plotted at
trial number 63, and so forth. In all groups, average
response accuracy was approximately proportional to
the logarithm of the number of trials in session 2. There
was no evidence of stimulus-specific learning in groups
that received 21 trials of practice in session 1 (i.e., there
was no apparent difference in performance between
the same and novel groups). With 63 trials of practice
there was some suggestion of a small stimulus-specific
component of learning that persisted throughout the
testing session in session 2, and this stimulus-specific
effect was larger in the groups that received 105 and
840 training trials. This pattern is also evident with
respect to average accuracy in the last bin of session
1: accuracy in the first bin of session 2 was roughly
equivalent to accuracy in the last bin of session 1 for
the same groups regardless of session-1 training, but

showed a successively larger drop against session 1 for
the novel group with increasing amounts of training.
Figure S1 (Supplementary material) shows this pattern
in more detail.

To determine how performance in session 2 was
influenced by stimulus novelty, the number of session
1 training trials, and initial session 1 accuracy, the data
in Figure 3 were analyzed with a linear mixed-effects
model (Bates et al., 2015; Kuznetsova et al., 2017). The
fixed predictor variables consisted of a two-level factor
representing stimulus novelty in session 2 and four
numeric variables representing i) proportion correct on
the first 21 trials of session 1; ii) log-transformed session
1 training trials; and iii) linear and quadratic terms for
log-transformed session 2 trials. Each numeric variable
was centered on its mean. Initially we compared the
goodness-of-fit obtained by three models that included
all two-, three-, and four-way interactions between all
of the terms: pairwise comparisons of goodness-of-fit
failed to find a significant difference between these
models (p � 0.30 for all χ2 tests) and therefore we
focused on the simpler, two-way interaction model.
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Next, we dropped eight two-way interactions that
did not approach statistical significance, p > 0.10.
The goodness-of-fit for the reduced and full two-way
models did not differ significantly, χ2 = 9.047, df = 8,
p = 0.34, and therefore we present results obtained with
the simpler fixed-effects model defined by the equation

y = μ0 + p1 + N + T1 + t2 + t22
+ (p1 × N ) + (N × T1) (1)

where y is proportion correct in a 21-trial bin in session
2, μ0 is the intercept, p1 is proportion correct on the
first 21 trials in session 1, N is stimulus novelty in
session 2, T1 is log-transformed session 1 training trials,
and t2 is log-transformed session 2 trial number divided
into 40, 21-trial bins (i.e., trial 21, 42, 63, ���, 840).
Equation 1 defines the curves that were drawn through
the data points in Figure 3. Finally, the height, slope,
and quadratic component of the accuracy-vs.-trial
function presumably varied across participants, hence
the between-subject variances of the intercept, t2, and
t22 were estimated by including σ̂ 2

i , σ̂ 2
t and σ̂ 2

t2 as three
random effects in the mixed-effects model.

Equation 1 provided reasonably good fits to the data,
as indicated by the best-fitting curves in Figure 3, and
the residuals were distributed approximately normally
and did not contain any obvious structure. Conditional
R2 was 0.69. The standard deviations of the random
effects are shown in Table A1. The model’s overall
goodness-of-fit was reduced significantly when σ̂ 2

i , χ2

= 2367, df = 1, p < 0.001, σ̂ 2
t2 , χ2 = 58.2, df = 3, p

< 0.001, and σ̂ 2
t , χ2 = 267.1, df = 3, p < 0.001, were

removed and therefore all random effects were retained
in the final version of the model.

The ANOVA table for the fixed effects is presented
in Table A2. The effect of p1 was significant because
accuracy in session 2 was positively associated with
accuracy on the first 21 trials of session 1. The p1 × N
interaction was included in the model but it was not
statistically significant, F(1, 90) = 3.46, p = 0.07, fp =
0.20. Both the linear (t2) and quadratic (t22) terms for
session 2 trial were significant, though the effect of the
linear term was nearly six times larger than the effect of
the quadratic term. This result can be seen in Figure 3:
accuracy increased approximately linearly across trials,
but the best-fitting curves are slightly non-linear. The
N × T1 (novelty × training) interaction was significant
because the effect of training was larger in the same
condition, F(1, 45) = 9.53, p = 0.003, fp = 0.46, than
in the novel condition (F(1, 45) = 0.5, p = 0.46, fp
= 0.11). This interaction can be seen in Figure 3 as
an increase in the difference between accuracy in the
same and novel conditions across the four panels. The
novelty × training interaction also is illustrated in
Figure 4a, which shows estimated accuracy at session-2
trial numbers 21 and 840 (i.e., bins 1 and 40) for each
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Figure 4. Effect plots illustrating the novelty × training
interaction found by the mixed-effects model analysis of
Experiment 1 (a) and Experiment 2 (b). Each point is estimated
accuracy in session 2 at bin 1 (t2 = 21) or bin 40 (t2 = 840) after
setting p1 to its mean. In both panels, the difference between
the same and novel conditions is proportional to log (T1). The
horizontal dotted line is average proportion correct during the
first 21 trials in session 1. Error bars represent ±1 SEM. The
points have been shifted horizontally slightly for clarity.
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session 1 training condition, while holding the effect of
p1 constant by setting it to its mean. The interaction
is shown by the difference in the slopes of the lines
relating accuracy to the number of training trials. Note
that this effect plot differs from Figure 2b because the
novelty and training effects are shown after taking into
account the estimated effects of p1 and t2. Figure 4a
suggests that accuracy in the same condition, but not
the novel condition, increased proportionally with
log-transformed training trials.

The novelty × training interaction shown in
Figure 4a is identical at bins 1 and 40: the difference
between the plotted effects for the two bins is due solely
to the estimated effect of t2. The fact that estimated
effects at bins 1 and 40 are simply displaced vertically
implies that the effect of t2 was essentially constant
across novelty and training conditions: accuracy
improved with increasing session 2 trial number by
approximately constant amounts in all conditions.
However, this result is not surprising because the
mixed-effects model defined by Equation 1 did not
include a three-way interaction between t2, novelty,
and training. To test whether the novelty × training
interaction depended on t2, we added terms for the t2
× novelty, t2 × training, and t2 × novelty × training
interactions to Equation 2. Adding these fixed effects
did not improve the overall fit, χ2 = 0.59, df = 3,
p = 0.89, and none of the interactions were significant,
F � 0.24, p � 0.62. Hence, the novelty × training
interaction did not vary significantly across session 2
trials. Overall, with respect to the effects of stimulus
novelty, the results of this finer-grained analysis on
accuracy throughout session 2 were consistent with
the trends observed in the first 105 trials on session 2:
stimulus-specific learning increased proportionally with
the amount of training in session 1, and a clear effect
of novelty emerged after 105 (session 1) training trials.

Discussion

Experiment 1 extended the results of Hussain et al.
(2012) by examining whether stimulus-specific learning
can be obtained with fewer training trials (21 and
63), and with novel stimuli (textures). We found clear
evidence of stimulus-specific learning in participants
who received 840 training trials, weaker evidence in
participants who received 105 training trials, and no
evidence of stimulus-specific learning in participants
who received 21 and 63 trials of practice (Figures 2b
and 3). Thus, one way of summarizing our findings is
to say that at least 105 practice trials were necessary
to produce statistically significant stimulus-specific
learning. However, our statistical modelling suggests
an alternative summary, namely that stimulus-specific
learning was a linear function of the logarithm of the
number of session 1 training trials (Figure 4a), and

that the difference between accuracy in the same and
novel conditions was statistically significant (with our
sample size) after approximately 105 trials. This result is
consistent with the view that stimulus-specific learning
occurred throughout training during session 1 (Poggio
et al., 1992; Hussain et al., 2012).

Hussain et al. (2012) found that stimulus-specific
learning in a face identification task was equivalent
in participants who received 105 and 840 training
trials. We replicated this result when we analyzed
average accuracy in the first 105 trials in session 2:
although the effect of novelty was slightly larger in
the 840-trials condition than the 105-trials condition
(see Figure 2b), the difference between conditions was
not statistically significant. However, our mixed-effects
analysis, which analyzed session 2 accuracy on a
finer time scale, found that the effect of novelty was
approximately proportional to the number of training
trials (Figure 4a).

One difference between studies is that Hussain et al
(2012) found more learning in session 2 in the novel
conditions than in the same conditions. We did not
find this effect: The novelty × t2 interaction was not
significant, F(1, 165) = 0.22, p = 0.64, fp = 0.04, and
neither was the three-way interaction between novelty,
t2, and training, F(1, 165) = 1.919, p = 0.168, fp = 0.11.
Hence, we found no evidence that participants in the
novel groups learned more in session 2 than participants
in the same groups, and the effect of stimulus novelty
did not change during the course of session 2 trials. It is
not clear whether this difference between studies is due
to the special status of faces as stimuli, or some other
factors.

In Experiment 2 we investigated whether stimulus-
specific learning resulting from limited practice endures
over a longer period. Our previous work had shown
stimulus-specific enhancements in both face and texture
identification persisted for over a year following one
session of extensive practice (840 trials per session;
Hussain et al., 2011). Furthermore, Aberg et al. (2009)
found generalization of learning to novel stimuli
after relatively smaller amounts of practice (400 trials
per session) when training sessions were separated
by a week. Hence, we sought to determine whether
similar findings to those observed in Experiment 1
would be obtained with a 1-week gap between sessions
1 and 2.

Experiment 2 (1-week interval)

Methods

Participants
One hundred sixty-eight naïve participants, 42

males, mean age = 19.7 years, range = 17-34 years,
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with normal or corrected-to-normal visual acuity
participated in the experiment. Other recruitment
details were the same as in Experiment 1.

Apparatus, stimuli, and procedure
The apparatus, stimuli, and procedure were the same

as those used in Experiment 1 (Figure 1A and B).

Design
The experimental design was the same as

Experiment 1 (Figure 1C), with the exception that the
two sessions were separated by 1 week, and that the
number of subjects per condition differed slightly from
Experiment 1. There were 48 participants each in the
1, 3, or 5 block training conditions (i.e., 21, 63, or 105
trials, respectively), and 24 participants each in the
40-block condition.1

Results

The data were analyzed with the same statistical
procedures used in Experiment 1.

Session 1: Accuracy
Accuracy on the first 21 trials in session 1 varied

considerably among participants in each group, and
the group means ranged from a low of 0.16 in the
same-63 group to a high of 0.24 in the same-21 group
(Figure 2c). However, a between-subjects ANOVA
found that the effect of group was not significant, F(7,
160) = 1.58, p = 0.14, f = 0.26. Analyzing the data with
a 2 (novelty) × 4 (training) ANOVA also yielded no
significant effects, F � 1.78, p � 0.15, f � 0.18. Hence,
we did not find a statistically significant difference
across groups at baseline.

Session 2: Accuracy, the first 105 trials
Accuracy during the first 105 trials in session 2 is

plotted in Figure 2d. As in Experiment 1, accuracy in
all conditions was greater than baseline (i.e., accuracy
in the first 21 trials in session 1). Also, accuracy in the
same condition, but not the novel condition, increased
monotonically with the number of training trials. There
also is the suggestion of a non-linear effect of training,
with session 2 accuracy increasing suddenly when
session 1 practice exceeded 63 trials.

A 2 (novelty) × 4 (training) ANOVA found
significant main effects of novelty, F(1, 160) = 5.46,
p = 0.021, fp = 0.18, and training, F(3, 160) = 7.18,
p < 0.001, fp = 0.37, and a non-significant novelty ×
training interaction, F(3, 160) = 2.18, p = 0.09, fp =
0.20. Planned trend analyses found that the linear trend

of accuracy across log-transformed training trials was
significant and differed between the novelty conditions:
the trend was significant in the same condition, F(1,
80) = 17.81, p < 0.0001, f = 0.51, but not in the
novel condition, F(1, 80) = 1.42, p = 0.24, f = 0.24.
Also, the nonlinear trends were not significant, F(2,
160) = 2.77, p = 0.066, fp = 0.19, and did not differ
significantly between novelty conditions, F(2, 160) =
0.20, p = 0.816, fp = 0.05. These trend analyses suggest
that average accuracy was approximately proportional
to the log-transformed number of training trials in
the same condition but not the novel condition, and
therefore that the difference between accuracy in the
same and novel conditions increased with training
trials. The simple main effect of novelty was significant
in the 840-trials, F(1, 160) = 6.25, p = 0.013, fp =
0.20, and 105-trials, F(1, 160) = 4.04, p = 0.046, fp
= 0.16, conditions, but not in the 63-trials, F(1, 160)
= 1.38, p = 0.242, fp = 0.09, and 21-trials, F(1, 160)
= 0.337, p = 0.562, fp = 0.05, conditions. Therefore,
as was found in Experiment 1, stimulus-specific
learning occurred with 105 practice trials, and the
trend analyses suggested an even earlier onset of such
learning.

As was done in Experiment 1, we examined whether
stimulus-specific learning differed between participants
who received 105 and 840 training trials by analyzing
the data from the 105-trials and 840-trials conditions
with a 2 (novelty) × 2 (training) ANOVA. The main
effect of novelty was significant, F(1, 68) = 7.96, p <
.01, f = 0.34, but the main effect of training, F(1, 68) =
0.89, p = 0.0.35, f = 0.11, and the novelty × training
interaction, F(1, 68) = 0.65, p = 0.42, f = 0.10, were
not. Thus, we failed to find evidence that the effect of
novelty differed between the 105-trials and 840-trials
conditions.

Session 2: Time course and individual differences
Accuracy in session 2, averaged across participants,

is plotted for each bin in Figure 5. In all conditions,
accuracy increased approximately linearly with the
logarithm of the number of trials in session 2, although
the slope of the accuracy-vs.-trials function was
noticeably lower in the 840-trials condition than the
other conditions. In conditions in which participants
received 21 training trials in session 1, there was no
evidence of stimulus-specific learning in session 2. In
fact, accuracy was slightly higher in the novel condition
than the same condition near the end of session 2. In
conditions in which participants received 63 training
trials in session 1, accuracy was slightly higher in the
same condition than the novel condition during the
first ≈100 session 2 trials, but not during subsequent
trials. In the 105 and 840 training trials conditions,
accuracy was higher in the same condition than the
novel condition throughout session 2. With respect
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Figure 5. Response accuracy from Experiment 2 (1-week interval), averaged across participants, measured in 40 21-trial bins in
session 2. Each plot shows data from participants who received different amounts of training in session 1. The solid and dashed lines
represent the predictions of the best-fitting linear mixed-effects model (Equation 2) for the same and novel conditions, respectively.
The horizontal dashed line in each plot indicates the average proportion correct during the first 21 trials in session 1. The × symbol on
the far left of each plot shows average accuracy in the last 21 trials session 1.

to accuracy in the last bin of session 1, accuracy
in the first bin of session 2 showed essentially no
decline for the same groups, but an increasingly larger
decline with amount of session 1 training for the
novel groups. This result is consistent with what was
observed after a day’s delay (Experiment 1). A more
detailed view of the time course across sessions is
provided in Figure S1 (Supplementary material).
That figure shows there was a slight decrease in
accuracy in the same condition between the last
block in session 1 and the first block in session 2, and
this decrease was larger in groups receiving 105 and
840 training trials. However, in the novel condition
there was a larger decrease in accuracy between
session 1 and session 2, particularly in the 840-trials
condition.

As in Experiment 1, the data were analyzed with a
linear mixed-effects model with the same fixed predictor
variables as described for that experiment. Again,
we used a model-comparison approach to establish
the simplest model, with the final fixed-effects model

defined by the equation

y = μ0 + p1 + N + T1 + t2 + t22
+ (p1 × T1) + (N × T1) + (T1 × t2) (2)

where y is proportion correct in a 21-trial bin in session
2, μ0 is the intercept, p1 is proportion correct on the
first 21 trials in session 1, N is stimulus novelty in
session 2, T1 is log-transformed session 1 training trials,
and t2 is log-transformed session 2 trial. Note that
this model differs from the one defined by Equation 1.
Finally, the model allowed the intercept, slope, and
quadratic component of the accuracy-vs.-trial function
to vary across participants by including σ̂ 2

i , σ̂ 2
t and σ̂ 2

t2
as three random effects.

The model provided reasonably good fits to
the averaged data, as indicated by the best-fitting
curves in Figure 5, and the residuals were distributed
approximately normally and did not contain any
obvious structure. Conditional R2 (Bartoń, 2022) was
0.67. The standard deviations of the random effects
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were similar to those found in Experiment 1 (Table A1).
The model’s overall goodness-of-fit was reduced
significantly when σ̂ 2

i , χ2 = 4368, df = 1, p < 0.001,
σ̂ 2
t2 , χ

2 = 46.5, df = 3, p < 0.001, and σ̂ 2
t , χ2 = 284.5,

df = 3, p < 0.001, were dropped and therefore all three
random effects were retained in the final version of the
model.

The ANOVA table for the fixed effects is presented
in Table A3. The coefficients for the covariate (p1) and
the p1 × T1 interaction were significant: Overall, there
was a positive association between p1 and accuracy,
but the association varied across training conditions.
Specifically, the estimated effect of p1, represented by
the slope of the line relating p1 and session 2 accuracy,
increased with the log-transformed number of training
trials: the slope was 2.15 times greater in the 840 trials
condition (m = 0.82) than in the 21 trials condition
(m = 0.38). One way of describing this interaction is
to say that participants who performed best initially in
session 1 tended to perform best in session 2, and this
trend was stronger in participants who received lots
of training trials in the first session. In other words,
training seemed to reinforce or enhance the association
between initial accuracy and session 2 performance.

The fixed effect coefficients for both t2 and t22 also
were significant, although, as in Experiment 1, the effect
size for the linear term was 5.6 times larger than the
effect size for the quadratic term. This result can be seen
in Figure 5: accuracy increased approximately linearly
across trials, but the best-fitting curves are slightly
non-linear. The t2 × T1 interaction was significant
because the effect of session 2 trials differed across
training conditions: The linear trend of estimated
accuracy (averaged across novelty conditions) across
log-transformed session 2 trials was largest in the 21
trial condition, fp = 1.39, smallest in the 840 trials,
condition, fp = 0.78, and intermediate in the 63
trial, fp = 1.29, and 105 trial, fp = 1.20, conditions.
Another way of stating this result is that accuracy in
the four training conditions (averaged across novelty
conditions) differed noticeably at the start of session
2 but was nearly equal by the end of session 2. We
return to this point in the following section when
we analyze the two experiments with a single
model.

As in Experiment 1, the mixed-effects model analysis
found that the novelty × training (N × T1) interaction
was significant because accuracy increased with trial
number faster in the same condition than the novel
condition: the effect of training was significant in the
same condition, F(1, 83) = 4.81, p = 0.031, fp = 0.24,
but not the novel condition, F(1, 82) = 1.83, p = 0.126,
fp = 0.17. This result is consistent with what was found
with average accuracy in the first 105 trials in session 2
(Figure 2d). The novelty × training interaction can be
seen in Figure 5 as an increase in the difference between
average accuracy in the same and novel conditions as

training trials increase (across panels) from 21 to 840.
The interaction also is illustrated in the effect plot in
Figure 4b, which shows the interaction at the start and
end (i.e., bins 1 and 40) of session 2. Inspection of
Figure 4b shows that the difference between accuracy in
the same and novel conditions increased with increasing
training trials, and that this increase in the same/novel
difference across training trials was the same at bin 1
and bin 40.

In summary, when session 2 occurred after a week’s
delay, we found clear evidence of stimulus-specific
learning in participants who received 105 and 840
trials of practice, and no evidence of stimulus-specific
learning in participants who received 21 and 63 trials of
practice. Thus, as was the case in Experiment 1, one way
of summarizing our findings is to say that at least 105
practice trials were necessary to produce statistically
significant stimulus-specific learning, suggesting that
some criterion amount of practice is needed to produce
stimulus-specific learning. However, as in Experiment 1,
we found that effect of stimulus novelty increased
as a linear function of the logarithm of the number
of session 1 practice trials (Figure 4b). This result is
consistent with the view that stimulus-specific learning
occurred throughout training during session 1 (Poggio
et al., 1992; Hussain et al., 2012), and that the difference
between accuracy in the same and novel conditions
was statistically significant (with our sample size) after
approximately 105 trials.

Comparison of Experiments 1 and 2

In many respects the analyses of Experiments 1 and
2 yielded similar results. In both experiments, accuracy
in session 2 was related to initial accuracy in session 1
(p1), the amount of training in session 1, and stimulus
novelty. More specifically, after statistically accounting
for variation in p1, the difference between response
accuracy in the same and novel conditions increased
linearly with log-transformed training trials. Indeed,
the novelty × training interaction measured at the start
of session 2 was very similar in the two experiments
(Figure 4), which suggests that the effects of practice
did not depend on the length of the retention interval
(i.e., one day vs. one week). However, the analyses also
found that the effect of p1 (initial accuracy), on session
2 accuracy increased with the number of session 1
training trials when the sessions were separated by one
week (Experiment 2) but not when they were separated
by one day (Experiment 1). Also, after a 1-week interval
but not after a 1-day interval, the effect of session 1
training trials declined with session 2 trial number,
which implies that the beneficial effects of additional
training in session 1 faded over the course of session 2
when the sessions were separated by 1 week.
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Differences between the results obtained in the two
experiments were evaluated quantitatively in three ways.
First, we analyzed the data in Figures 2b and d with a 2
(novelty) × 4 (training) × 2 (experiment) ANOVA. The
linear trend of accuracy across log-transformed training
trials was significant, F(1, 248) = 30.49, p < 0.001, f
= 0.35, and differed between novelty conditions, F(1,
248) = 12.77, p < 0.001, f = 0.23. None of the other
effects were significant, F � 1.21, p � 0.29, f � 0.07.
Follow-up t tests found that the effect of novelty was
significant in the 840 trials, t(43.3) = 3.96, p < 0.001,
d = 1.20, and 105 trials, t(69.9) = 2.49, p = 0.015, d
= 0.60, conditions, but not in the 63 trials, t(59.9) =
0.12, p = 0.12, d = 0.41, and 21 trials, t(58.7) = −0.64,
p = 0.53, d = −0.17, conditions. These results are very
similar to the ones obtained by the ANOVAs performed
on the individual experiments.

Next, we analyzed the proportion correct in the first
block of trials (i.e., bin 1) in session 2 with a linear
model that included proportion correct in the first
21 trials of session 1 (p1), log-transformed session 1
training trials (T1), and two binary factors representing
novelty and experiment. The effects of p1, F(1, 255) =
41.13, p < 0.0001, f = 0.40, and T1, F(1, 255) = 22.32, p
< 0.0001, f = 0.30, were significant. The main effect of
novelty was not significant (F(1, 255) = 3.52, p = 0.062,
f = 0.12), but the novelty × T1 interaction (F(1, 255)
= 9.03, p < 0.003, f = 0.19) was significant. None of
other effects were significant, F < 1, p > 0.37, f � 0.04.
Follow-up analyses found that the effect of T1 was
significant in the same condition, F(1, 127) = 25.01, p
< 0.001, f = 0.44, but not in the novel condition, F(1,
127) = 1.75, p = 0.19, f = 0.12. To examine the degree
to which accuracy in the same condition was a linear
function of log-transformed training trials, we added a
quadratic coefficient (T 2

1 ) to the model. The quadratic
coefficient’s effect size was small and not statistically
significant, F(1, 128) = 0.013, p = 0.91, f = 0.01. Thus,
this analysis found that the effect of stimulus novelty on
accuracy in the first block of session 2 trials increased
approximately linearly with logarithm of the number of
session 1 training trials and that the effect of novelty
did not differ significantly between experiments.

Session 2: Time course

Finally, we analyzed the data in Figures 3 and 5 with
a linear mixed-effects model that included all of the
fixed effects listed in Equations 1 and 2 plus a two-level
factor representing experiment that was allowed to
interact with all of the other fixed effects. The model
also included σ̂ 2

i , σ̂ 2
t , and σ̂ 2

t2 as random, within-subject
effects. The standard deviations of the random effects
were similar to those found in the separate analyses
of the two experiments (Table A1), and all three were
statistically significant, p < 0.001.

The ANOVA table for the fixed effects is shown in
Table A4. As was found in the separate analyses of
Experiments 1 and 2, the effect of t2 (trial number in
session 2), was more than five times larger than the effect
of t22 , indicating that accuracy during session 2 increased
approximately linearly with log-transformed trial
number. However, the effect of t2 varied significantly
across training conditions and experiments (Figures 6a
and b). When the sessions were separated by one day the
effect of training persisted throughout session 2 and the
t2 × T1 interaction (session-2 trial number by session-1
training), was not significant, F(1, 94) = 0.09, p = 0.76,
fp = 0.03. On the other hand, when the sessions were
separated by 1 week, the effect of session 1 training
trials (T1) diminished with increasing session 2 trial
number (t2), and the t2 × T1 interaction was significant,
F(1, 166) = 21.65, p < 0.001, fp = 0.36. This three-way
interaction suggests that the effect of training persisted
throughout session 2 when the sessions were separated
by one day but not one week (Figure 6). Alternatively,
the interaction shows that extensive practice in session 1
improved performance at the start of session 2 in both
experiments, but improved performance at the end of
session 2 only when the sessions were separated by one
day.

Individual differences

The combined analysis also found that accuracy in
the first block of session 1 (p1) was positively associated
with accuracy in session 2 in all conditions in both
experiments. The slope of the line relating p1 and
accuracy in session 2 was steeper in the same condition
than the novel condition, but neither the p1 × novelty
interaction, F(1, 250) = 3.74, p = 0.054, fp = 0.12, nor
the p1 × novelty × experiment interaction, F(1, 250) =
0.29, p = 0.59, fp = .03, were significant. Thus, the effect
of novelty did not vary significantly with initial session
1 performance. However, the p1 × T1 × experiment
interaction was significant, F(1, 250) = 5.09, p = 0.025,
fp = 0.14: The effect of p1 (i.e., the slope of the line
relating p1 and session 2 accuracy) varied significantly
across training conditions and experiments. Specifically,
the combined analysis found that the slope of the line
relating accuracy in the two sessions was 2.25 times
greater in the 21 trials condition than the 840 trials
condition when the sessions were separated by one
day, but was 2.1 times smaller in the 21 trials condition
than in the 840 trials condition when the sessions were
separated by 1 week. This interaction is illustrated
by the effects plots in Figures 7a and b, which show
estimated accuracy, averaged across novelty conditions,
for the first 21 trials in session 2 (also see Figure S2). In
both plots, session 2 accuracy is positively associated
with initial session 1 performance (p1): Participants who
performed well initially in session 1 tended to perform
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Figure 6. Illustration of the trial × training × experiment interaction from the mixed-effects model analysis of the combined data
from Experiments 1 and 2 (Table A4). Each point is estimated accuracy in session 2, averaged across novelty conditions, with the
covariate (p1) set to its mean. The horizontal dotted lines indicate mean values of p1. Error bars are ±1 SEM. (a) In Experiment 1 the
effect of training persisted throughout session 2 and the trial × training interaction was not significant. (b) In Experiment 2 the effect
of training diminished with increasing trial number and the trial × training interaction was significant.

well initially in session 2. However, the slopes of the
lines decrease with training trials in Experiment 1 (1-day
interval) but increase with training in Experiment 2
(1-week interval). Thus, after one day, training
had its largest effect on participants who initially
performed poorly, but after one week, training had its
largest effect on participants who initially performed
well.

The effects plots in Figures 7c and d show estimated
accuracy, averaged across novelty conditions, for the
last 21 trials in session 2. A comparison of top and
bottom rows of Figure 7 shows that the lines for each
training condition are shifted vertically but that the
slopes are unchanged. The vertical shift reflects the
effect of session 2 trial number (t2): accuracy increased
from bin 1 to bin 40, and so estimated accuracy is
higher in Figures 7c and d than 7a and b. When the
sessions were separated by one day, the effect of t2
did not vary across training conditions (Figure 6a),
so the lines in Figures 7b and d are shifted vertically
by nearly identical amounts. Therefore, after a day’s
delay the effect of training at the end of session 2,
like the effect at the start of session 2, was greatest
among poor performers and nearly zero among good
performers (Figure 7c). However, when the sessions

were separated by one week the effect of t2 varied across
training conditions (Figure 6b), and therefore the lines
in Figures 7a and c are shifted by different amounts.
Consequently, in Experiment 2 accuracy at the end of
session 2 was positively associated with the number
of session 1 training trials in good performers, but
negatively associated with training in poor performers
(Figure 7d).

Stimulus novelty

Finally, the mixed-effects model found significant
main effects of stimulus novelty (N) and log-
transformed number of training trials (T1), and a
significant N × T1 interaction. The interaction was
significant because the effect of training was larger in the
same condition, F(1, 130) = 12.23, p < 0.001, fp = 0.31,
than the novel condition, F(1, 127) = 0.19, p = 0.666, fp
= 0.04. The novelty × training interaction did not differ
significantly between experiments, F < 1, p = 0.62, fp
= 0.03. Our separate analyses of Experiments 1 and
2 found that the t2 × novelty × training interaction
was not significant. Nevertheless, it is possible that that
three-way interaction could vary between experiments.
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Figure 7. Illustration of the p1 × training × experiment interaction from the mixed-effects model analysis of the combined data from
Experiments 1 and 2 (Table A4). Each point is estimated accuracy, averaged across novelty conditions, in the first 21 trials (top) and
last 21 trials (bottom) in session 2. Results for Experiment 1 and 2 are shown in the left and right columns, respectively. The horizontal
dotted line in each plot indicates the mean value of p1, and the diagonal line represents y = x. Error bars represent ±1 SEM. The
various traces have been shifted horizontally slightly for clarity.

We tested this idea by re-analyzing the combined data
with a mixed-effects model that included terms for the
t2 × novelty, t2 × novelty × training, and t2 × novelty
× training × experiment interactions. Adding these

fixed effects did not change the overall goodness-of-fit
significantly, χ2 = 2.07, df = 3, p = 0.56, and none
of the interactions were significant, F � 1.79, p �
0.18, fp � 0.08. So the novelty × training interaction
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did not vary significantly across session 2 trials or
experiments.

In summary, the combined analyses found that
Experiments 1 and 2 differed in terms of the effect
of the amount of session 1 training and the effect of
initial session 1 performance, but not in the effect of
stimulus novelty. The number of session 1 training
trials produced differences in performance on session
2 that were nearly constant throughout the session
when the sessions were separated by one day, but which
faded away during session 2 when the sessions were
separated by a week (Figure 6). Additionally, training
affected good and poor performers differently in the
two experiments. When the sessions were separated
by one day, the largest benefits of training were for
participants who performed poorly in the first block
of trials in session 1; however, when the sessions were
separated by 1 week the largest benefits of training
were for participants who performed the best in the first
block of session 1 (Figure 7). Importantly, we found
no evidence that the novelty × training interaction
differed between experiments. Regardless of whether
the sessions were separated by 1 day or 1 week, the
difference between accuracy in the same and novel
conditions was proportional to the logarithm of the
number of session 1 training trials, and the difference
was statistically significant after approximately 105
trials.

General discussion

The current experiments investigated perceptual
learning by measuring response accuracy in a 1-of-10
texture identification task across two sessions separated
by one day (Experiment 1) or one week (Experiment 2).
Performance in session 2 was influenced by several
factors, including i) initial performance in session 1; ii)
the number of session 1 training trials; iii) the session
2 trial number; and iv) whether the stimuli in session 2
were novel. We found that, after statistically accounting
for the other factors that affected performance,
the difference between accuracy in session 2 in the
same and novel conditions increased linearly with
the log-transformed number of session 1 training
trials. This result is consistent with the hypothesis
that stimulus-specific perceptual learning begins
very early in practice, perhaps in the first few trials,
and becomes statistically significant later in practice
at a point that depends on the statistical power of
the experiment. Here, the difference between the
same and novel groups was statistically significant
after approximately 100 practice trials, as was found
with a face identification task (Hussain et al., 2012),
suggesting that rapid learning of stimulus properties
characterizes pattern identification more generally,

and not face identification specifically. Furthermore,
the effect of stimulus novelty did not differ between
inter-session intervals (Cf. Figures 4a and b), and
did not vary across session 2 trial number. Therefore,
rapid stimulus-specific improvements in the current
task were relatively long lasting and robust to further
training during the test session. Unlike some previous
studies, participants in our experiments were not given
preliminary practice and no trials were discarded. Thus,
stimulus-specific information seems to be learned at
first exposure to the task. It has been suggested that
steeper increases in performance early in the time
course of learning are associated with learning of
general aspects of the task, and more gradual, later
improvements are due to learning of stimulus-specific
properties (e.g., Karni & Bertini, 1997; Karni et al.,
1998). However, we found little evidence for distinct,
sequential phases in learning. Instead, the similarity of
slopes of the learning curves in session 2 in the same
and novel conditions suggest that stimulus-specific and
general learning occurred concurrently throughout
practice.

Comparison with previous work

Jeter et al. (2010) found more generalization of
learning of orientation discrimination to untrained
retinal locations and stimulus orientations after
relatively few practice trials (1,200 vs. 7,000+ trials).
Aberg et al. (2009) found more generalization of
learning in a hyperacuity task when 1,600 trials were
distributed over 4 days (400 trials/day) than over two
days (800 trials/day). We did find that after a 1-week
interval (Experiment 2), accuracy for novel stimuli at the
end of session 2 was negatively (albeit non-significantly)
associated with the number of session 1 training trials
(Figure 4b). However, accuracy for novel stimuli at
the start of session 2 was slightly positively associated
with the number of practice trials. Also, after a one day
interval (Experiment 1), accuracy in the novel condition
was essentially independent of the number of practice
trials throughout session 2 (Figure 4a). Therefore, we
did not find strong evidence that extensive practice
reduced generalization of learning to novel stimuli in
our task. Of course, the current experiments differed in
several ways from those reported by Jeter et al. (2010)
and Aberg et al. (2009). For example, Jeter et al. (but
not Aberg et al.) used an adaptive staircase to vary
stimuli across trials whereas the current experiments
used the method of constant stimuli. The studies also
used different stimuli and tasks, and differed in the way
practice was distributed within and across sessions.
Additional work is needed to understand how those
methodological differences contributed to the different
results.
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Other predictors of learning: Amount of
practice and individual differences

In both experiments, the strongest predictor of
performance in session 2 was the log-transformed trial
number (t2 effect size: 1.24 and 1.23), followed by
individual differences at baseline (p1 effect size: 0.50
and 0.62). Average accuracy increased approximately
linearly against log trial for all groups, consistent with
a single exponential function for perceptual learning as
shown for various tasks (Dosher & Lu, 2007; Hussain
et al., 2009b; Zhang, Zhao, Dosher, & Lu, 2019;
Cochrane & Green, 2021; Yang et al., 2022). Stimulus
novelty significantly affected the intercept but not the
slope of the accuracy-vs.-trial function (Figures 3 and
5), but the effect size for novelty (N = 0.3 and 0.14) was
smaller than the effects of t2 and p1. In the following
sections we discuss the contribution of training and
individual differences to learning of our task.

Amount of practice

We found that the slope of the learning curve in
session 2 depended on the number of session 1 training
trials when the two days were separated by 1 week but
not when they were separated by 1 day (Figure 6).
One day after training, session 2 accuracy increased at
the same rate against trial number for all groups, so
performance at the end of session 2 remained ordered
by the amount of session 1 practice (Figure 6a). On
the other hand, a week after training the slopes of the
learning curves were shallower for groups that received
more training trials in session 1, so performance in
the last few trials in session 2, averaged across novelty
conditions, was nearly equal across groups (Figure 6b).
Hence, the benefits of additional practice were observed
at the start of session 2 in both experiments, but were
observed at the end of session 2 only in Experiment 1
(after a 1-day interval). This result, combined with
the finding that the N × T1 did not differ between
experiments, suggests that the longer 1-week interval
between sessions constrained the amount of learning
(or the retention of learning) by similar amounts in the
same and novel conditions. Between-session forgetting
is characteristic of some types of perceptual learning
(Yang et al., 2022), but it is not clear how it depends on
the training-test interval. Based on the current results,
we predict that increasing the training-test interval
beyond 1 week would further diminish the benefits of
large amounts of practice, but would not affect the
stimulus-specificity of learning.

Individual differences

Initial accuracy in session 1 was a strong predictor
of performance in session 2 (e.g., Hussain et al.,

2011; Yang et al., 2020), even when the two sessions
were separated by 1 week. This result suggests that
individual differences were at least somewhat stable
across sessions, and is consistent with previous studies
finding stable individual differences in higher-level
object recognition, visual attention, and gaze (Sheikh
et al., 2014; Andermane, Bosten, Seth, & Ward, 2019;
de Haas, Iakovidis, Schwarzkopf, & Gegenfurtner,
2019; Richler et al., 2019; Wilbiks & Beatteay, 2020;
Veríssimo, Hölsken, & Olivers, 2021). In this sense, our
results are consistent with the hypothesis that individual
differences in general perceptual or recognition abilities
may be linked to differences in cortical morphology
or dynamics (e.g., Eayrs & Lavie, 2019; Stacchi,
Liu-Shuang, Ramon, & Caldara, 2019) and associated
with different learning strategies (Forest, Siegelman,
& Finn, 2022; Smithson, Eichbaum, & Gauthier,
2023). Our mixed-effects model analyses found a
significant association between initial performance
and the intercept of the session 2 accuracy-vs.-trial
function, but not its slope. This means that the rate of
within-session learning in session 2 did not depend on
initial performance, in contrast with what has been
found in some studies (Fahle & Henke-Fahle, 1996;
Yang et al., 2020). Our mixed-effects model analyses
also found that the intercept, slope, and curvature
of the session 2 learning curve varied significantly
across individuals, and that the size of these random
effects were large. In other words, the learning curves in
session 2 varied significantly across participants. This
result is consistent with previous reports that perceptual
learning varies considerably across individuals (Fine
& Jacobs, 2002; Jeter et al., 2010). Future work
examining learning curves across multiple days will
help to determine the extent to which these random
effects represent stable individual differences in
learning.

Interactions between amount of practice and
individual differences

Our results suggest that the effect of session
1 training depended on how well participants
performed in the first block of session 1, and that this
dependency differed between experiments (Figure 7). In
Experiment 1, the estimated effects of session 1 training
were largest among participants who initially performed
poorly in session 1 (Figure 7a). Furthermore, accuracy
in session 2 improved by similar amounts in all training
conditions (Figure 6a), and therefore at the end of
session 2 the effects of training were still largest among
participants who initially performed poorly in session
1 (Figure 7b). In Experiment 2, unlike Experiment 1,
the effects of session 1 training were largest among
participants who performed well initially in session 1
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(Figure 7b). In other words, good performers benefited
most from session 1 training. However, accuracy in
session 2 improved more in the 21-trials condition than
the 840-trials condition (Figure 6b), and therefore by
the end of session 2 the effect of training among good
performers was reduced and among poor performers
there was a small negative association between accuracy
and training (Figure 7d).

One way of summarizing these results is to say that
when the sessions were separated by one day, training
during session 1 benefited poor performers more than
good performers, and this benefit of practice persisted
throughout session 2. However, when the sessions
were separated by one week, training during session
1 benefited good performers but practice in session 2
allowed poor performers to catch up, perhaps because
accuracy among good performers approached an upper
limit (Figure 6b). This difference between experiments
suggests that poor performers can benefit from extensive
training, but that some of the benefits of practice are
diminished following a one week delay between training
and test sessions. The results obtained with good
performers are more puzzling. One could reasonably
expect good performers to benefit from practice and
then reach an upper limit, as they did in Experiment 2.
However, it is not obvious why training had no effect on
performance among good performers in Experiment 1.
One might argue that brief practice in session 1 was
sufficient to allow good performers to reach an upper
limit on accuracy, but this idea is inconsistent with
the observation that response accuracy among good
performers improved significantly during session 2 (Cf.
Figures 7a and c). So it remains unclear why the effect
of training was so small among good performers in
Experiment 1.

Summary

Overall, our results are consistent with past
research showing statistically-reliable stimulus-specific
learning early in training (e.g., Wright & Fitzgerald,
2001; Hawkey et al., 2004; Hussain et al., 2012).
However, our results further suggest that, at least
in some circumstances, stimulus-specific learning
occurs throughout practice, perhaps concurrently
with general learning. In addition, we found that
the stimulus-specific effects of a small number of
practice trials are similar after retention intervals
of one day and 1 week, which extends previous
reports that 840 practice trials produces long-lasting,
stimulus-specific perceptual learning (e.g., Hussain
et al., 2011). Finally, our results suggest that the
initial baseline differences in task performance
modulate the effects of practice in a manner that
depends on the interval between practice and test
sessions.

Conclusions

Stimulus-specific effects occur very early in learning,
and are relatively enduring even when produced by
small amounts of practice. We found limited evidence
for sequential phases of general and stimulus-specific
learning. Instead, our results suggest that both types of
learning, at least in these types of identification tasks,
occur concurrently throughout practice. We interpret
our results to suggest that the various processes
governing perceptual learning are engaged at the
beginning of practice and do not change qualitatively
across the first several hundred trials of practice. Future
research on perceptual learning should examine whether
stimulus-specific learning occurs on a continuum,
rather than testing solely for the presence or absence of
stimulus-specific learning.

Keywords: vision, perceptual learning, pattern
identification, psychophysics, individual differences
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Footnote
1We tested more participants in the 21, 63, and 105 trials conditions
because these were novel conditions for which the effects were unknown,
whereas previous studies (Hussain et al., 2009b; Hussain, Sekuler, &
Bennett, 2009c; Hussain et al., 2012) using similar stimuli and procedures
have already shown that 840 trials produces significant stimulus-specific
learning that lasts over intervals of 1 day and 1 year.
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Appendix: Statistical tables

σ̂i σ̂t2 σ̂t22 Residual

1-day experiment 0.1107 0.1234 0.0837 0.0973
1-week experiment 0.1136 0.1041 0.0663 0.1016
Combined 0.1126 0.1115 0.0728 0.1000

Table A1. Standard deviations of the random effects in the
mixed-effects models used to analyze Experiments 1 and 2 and
the combined experiments.

Sum Sq DF1 DF2 F Pr(>F) fp

p1 0.2127 1 90 20.449 <0.001* 0.50
N 0.0775 1 90 8.180 0.005* 0.30
T1 0.1984 1 90 20.942 <0.001* 0.48
t2 1.3945 1 95 147.176 <0.001* 1.24
t22 0.0381 1 95 4.021 0.048* 0.21
p1 × N 0.0328 1 90 3.459 0.066 0.20
N × T1 0.1037 1 90 10.942 0.001* 0.35

Table A2. ANOVA table for linear mixed-effects model (Eq. 1) fit
to accuracy data from the 1-day interval experiment (Figure 3).
N is a two-level factor representing stimulus novelty in session
2, t2 represents log-transformed session 2 trial number (i.e., 21,
42, 63, ���, 840), T1 is log-transformed session 1 training trials,
and p1 is accuracy on the first 21 trials in session 1. The table
shows partial Cohen’s f (fp) as well as type III sums of squares
(Sum Sq) and numerator (DF1) and denominator (DF2) degrees
of freedom calculated with Satterthwaite’s method
(Satterthwaite, 1946).

Sum Sq DF1 DF2 F Pr(>F) fp

p1 0.6334 1 162 61.388 <0.001* 0.62
N 0.0305 1 162 2.959 0.087 0.14
T1 0.0085 1 163 0.829 0.364 0.07
t2 2.5825 1 167 250.295 <0.001* 1.23
t22 0.0827 1 167 8.011 0.005* 0.22
p1 × T1 0.0438 1 162 4.243 0.041* 0.16
N × T1 0.0527 1 162 5.107 0.025* 0.18
t2 × T1 0.2234 1 166 21.651 <0.001* 0.36

Table A3. ANOVA table for the linear mixed-effects model (Eq. 2)
fit to accuracy data from the 1-week interval experiment that
are plotted in Figure 5. Symbols are the same as in Table A2.

Sum Sq DF1 DF2 F Pr(>F) fP

p1 0.7128 1 250 71.202 <0.001* 0.53
N 0.0881 1 250 8.795 0.003* 0.19
T1 0.0599 1 257 5.979 0.015* 0.15
t2 3.8762 1 274 387.183 <0.001* 1.19
t22 0.1204 1 263 12.027 0.001* 0.21
E 0.0239 1 257 2.383 0.124 0.10
p1×N 0.0375 1 250 3.742 0.054 0.12
p1×T1 0.0022 1 250 0.225 0.636 0.03
N × T1 0.1391 1 250 13.891 <0.001* 0.24
t2 × T1 0.0995 1 260 9.942 0.002* 0.20
p1 × E 0.0194 1 250 1.934 0.166 0.09
N × E 0.0036 1 250 0.359 0.550 0.04
t2 × E 0.0477 1 260 4.763 0.030* 0.14
T1 × E 0.0231 1 257 2.312 0.130 0.09
p1 × T1 × E 0.0509 1 250 5.089 0.025* 0.14
p1 × N × E 0.0029 1 250 0.289 0.591 0.03
N × T1 × E 0.0024 1 250 0.240 0.624 0.03
t2 × T1 × E 0.0711 1 260 7.103 0.008* 0.17

Table A4. ANOVA table for the fixed effects of a linear
mixed-effects model fit to the combined data from Experiments
1 and 2. E stands for a two-level factor representing
experiment. Other symbols are the same as in Tables A2 and A3.
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