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The contrast sensitivity function (CSF) is a fundamental
visual model explaining our ability to detect small
contrast patterns. CSFs found many applications in
engineering, where they can be used to optimize a
design for perceptual limits. To serve such a purpose,
CSFs must explain possibly a complete set of stimulus
parameters, such as spatial and temporal frequency,
luminance, and others. Although numerous contrast
sensitivity measurements can be found in the literature,
none fully explains the complete space of stimulus
parameters. Therefore, in this work, we first collect and
consolidate contrast sensitivity measurements from 18
studies, which explain the sensitivity variation across
the parameters of interest. Then, we build an analytical
contrast sensitivity model that explains the data from all
those studies. The proposed castleCSF model explains
the sensitivity as the function of spatial and temporal
frequencies, an arbitrary contrast modulation direction
in the color space, mean luminance, and chromaticity of
the background, eccentricity, and stimulus area. The
proposed model uses the same set of parameters to
explain the data from 18 studies with an error of
3.59 dB. The consolidated contrast sensitivity data and
the code for the model are publicly available at
https://github.com/gfxdisp/castleCSF/.

Introduction
A contrast sensitivity function (CSF) is a visual

model that explains what is the smallest contrast of a
simple stimulus (a sinusoidal grating, a Gabor patch, or
a disk) that can be detected on a uniform background
(Barten, 1999; Kelly, 1979; Robson, 1966). These

types of detection characteristics are fundamental
performance measures of the visual system and have
been thoroughly measured over several decades using
psychophysical methods. Despite the abundance of
data, few models summarize these measurements
across more than three of the many parameters
influencing the visibility of the stimuli. Creating such
a model is the goal of our work. Our model explains
the available psychophysical data across the most
relevant stimulus parameters: the chromaticity of the
background, the chromatic direction of modulation,
area, spatial and temporal frequency, luminance,
and eccentricity. The first letters of those dimensions
form the acronym of our model—castleCSF. To
facilitate multiple applications and research on
sensitivity, we made our model and the data available at
https://github.com/gfxdisp/castleCSF.

Although contrast sensitivity explains visual
performance only for a limited class of artificial
stimuli, it is a building block of more complex models
of the visual system, which can generalize to more
comprehensive stimuli, including images or videos.
For example, whereas contrast masking has different
characteristics depending on the luminance, spatial
frequency, and color modulation direction of the
patterns, masking characteristics can be unified when
contrast is normalized by the sensitivity predicted by the
CSF (Cass, Clifford, Alais, & Spehar, 2009; Daly, 1992).
Although the perceived magnitude of suprathreshold
contrast varies across luminance, the deviation from
contrast constancy can once again be explained using
contrast sensitivity data (Kulikowski, 1976; Peli,
1995). The detection of more complex patterns can
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be estimated using energy models, which also rely on
the CSF (Watson, 2000). Finally, visible differences on
complex backgrounds can be explained by multichannel
visual difference predictors (Daly, 1992; Mantiuk, Kim,
Rempel, & Heidrich, 2011), which incorporate models
of both visual masking and contrast sensitivity.

CSFs are also commonly used to control and
optimize display applications, and in particular
virtual and augmented reality (VR/AR) headmounted
systems. In this work, we focus on the dimensions of
the CSF that are the most relevant in the context of
color video applications, in particular for AR/VR.
Notably, as these displays typically cover a significantly
larger field-of-view than traditional displays, much
of the content lies outside the user’s fovea, and
despite presenting very high physical pixel density
and resolution, the effective pixel per visual degree
resolution is often lower than conventional displays.
Perceptually informed rendering algorithms, like
contrast-aware (Tursun et al., 2019) or attention-aware
(Krajancich, Kellnhofer, & Wetzstein, 2023) foveated
rendering, and foveated image reconstruction
(Kaplanyan et al., 2019) are proposed to achieve
high perceptual content quality while conforming
to the limited power and compute budget. Owing
to their head-tracked nature, AR/VR often requires
ultra-high refresh rates and low persistence values,
resulting in heavier computational and bandwidth
costs. Rendering modalities where a subset of frames
are simplified can be used to alleviate this issue
(Denes, Maruszczyk, Ash, & Mantiuk, 2019). Recent
work by Duinkharjav et al. (2022) explicitly models
foveated color discrimination to generate chromatic
distortions that can minimize display power usage.
A comprehensive model of chroma-aware contrast
sensitivity is especially important to guide these kinds
of AR/VR algorithm development and is provided by
castleCSF.

Factors affecting contrast sensitivity

CSFs describe the visibility of gratings through
Fourier analysis (Campbell & Robson, 1968)—
explaining the detection characteristic as a function of
spatial and temporal frequency of the visual stimulus.
This is motivated by the existence of visual channels,
which are tuned to bands of spatial and temporal
frequencies (Kulikowski & Robson, 1999). However,
other parameters of the stimulus have no lesser
influence on the sensitivity. The sensitivity is affected
by luminance and chromaticity of the background
(Blackwell, 1946; Xu, Ye, Mantiuk, & Luo, 2022), the
size of the stimulus (Rovamo, Luntinen, & Näsänen,
1993), the angle from the fixation point (eccentricity)
(Virsu & Rovamo, 1979; Wright & Johnston, 1983)
and the position in the peripheral visual field (nasal,

temporal, superior, or inferior) (Anderson, Mullen, &
Hess, 1991), the orientation of a grating (Campbell,
Kulikowski, & Levinson, 1966), and the direction along
which the contrast is modulated in a three-dimensional
color space (Mullen, 1985; Wuerger et al., 2020).
It is also recognized that the sensitivity decreases
with age, mostly owing to optical factors, such as
the increase in the wavelength-dependent opacity
(Pokorny, Smith, & Lutze, 1987) or the inability of
the pupil to dilate at low light (senile miosis) (Watson
& Yellott, 2012), but also owing to neural factors.
The sensitivity is reduced at shorter viewing distances
owing to the error in accommodation (Hernández,
Doménech, Seguí, & Illueca, 1996). When a field of
different luminance surrounds a detected pattern, the
sensitivity is reduced (Yi et al., 2022) by glare and
local luminance adaptation (Vangorp, Myszkowski,
Graf, & Mantiuk, 2015). Binocular sensitivity is higher
than monocular sensitivity and can be predicted
from monocular sensitivity by quadratic summation
(Sbinocular =

√
S2
L + S2

R) (Legge, 1984).

Measurements of contrast sensitivity

Measurements are most often conducted via
noninvasive psychophysical methods (Campbell &
Green, 1965; Pointer & Hess, 1989), where participants
are shown stimuli of different contrast, and their
performance in a detection task is measured. Alternative
approaches use electrophysiological methods such as
electroretinography (Hood & Birch, 1990) and visual
evoked potential recordings (Norcia, Tyler, & Hamer,
1990), where the electrical response to the stimulus that
originates in the retina or the visual cortex is measured
directly. The characterization of optical characteristics
using techniques such as optical coherence tomography
(Adam, Shrier, Ding, Glazman, & Bodis-Wollner,
2013) and retinal imaging (Ortiz, Jiménez, Pérez-Ocón,
Castro, & González-Anera, 2010) can also provide
insights into contrast sensitivity. Data from all these
different kinds of studies is often impossible to compare
directly owing to the differences in methodology and
control conditions. Even among psychophysical studies,
there is no clear consensus regarding standard test
conditions or the type of stimuli used to measure the
visual system’s responses.

Because of the very large space of possible stimulus
parameters, existing contrast sensitivity studies typically
measure the variation along two to three selected
parameters to maintain a feasible length of a study.
It follows that creating a CSF that models a larger
set of dimensions requires combining data from
multiple studies. This poses several challenges. First,
each measurement often uses slightly different stimuli
(e.g., Gabors, stimuli with sharp edges, annulus rings,
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Table 1. Selection of popular CSF models from the literature. Notes: (1) for stabilized retinal images. (2) Only modeled for the three
selected color directions. (3) Excluding the region in which spatial frequency is below about 10 cpd, and temporal frequency is below
10 Hz.

different shapes of the aperture), as well as different
protocols and viewing conditions (monocular vs.
binocular, natural vs. artificial pupil). To account for
these variations, we allow for small relative changes
in the sensitivity between the datasets. Moreover,
many dimensions of the modeled CSF show strong
interactions. For example, the spatial and temporal
frequency dimensions of the CSF are not separable and
cannot be modeled as a combination of independent
spatial and temporal CSFs. To create a comprehensive
model, it is necessary to fit a model to multiple datasets
at the same time. This approach is different from what
is found in previous work modeling multidimensional
CSFs (Barten, 1999; Watson & Ahumada, 2016), in
which datasets were fitted one at a time. For the sake of
simplicity, castleCSF also does not attempt to faithfully
reproduce early vision mechanisms, such as those
modeled in the ISETBIO package (Brainard et al.,
2015). We intend to create a practical model, which can
summarize and predict a large body of data from the
literature.

Modeling contrast sensitivity

Several relevant CSF models are listed in Table 1
and are discussed in this section. Kelly was one of

the first to introduce a model of the interaction of
spatiotemporal mechanisms (Kelly, 1979). Notably,
Kelly pointed out that the spatiotemporal CSF can
alternatively be represented as the function of spatial
frequency and retinal velocity, which can be more
relevant for some applications. His model was based
on measurements with retinal images stabilized via eye
tracking, which is not representative of typical image or
video content consumption use cases. We found Kelly’s
data to be too distinct from comparable measurements
with non-stabilized stimuli to be used in our model.
Daly (2001) extended Kelly’s model, which was later
fitted to data for non-stabilized stimuli (Laird, Rosen,
Pelz, Montag, & Daly, 2006). All these models factor
only achromatic stimuli and do not consider other
stimulus properties such as luminance or stimulus
area.

A comprehensive CSF model can be found in
the visual difference predictor (VDP) work of Daly
(1992), though details on how the model was fitted to
data are omitted. This method models the effect of
spatial frequency, luminance, area, and eccentricity on
the contrast sensitivity of static achromatic stimuli.
(Barten, 1999), proposed a comprehensive CSF,
explicitly modeling the optical transfer function,
photoreceptor and neural noise, and lateral inhibition.
The original model included the effect of spatial
frequency, area, and luminance (Barten, 1992). The full
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model also includes extensions to the parafoveal and
temporal domain (Barten, 1999). Moreover, Bozorgian,
Pedersen, & Thomas (2022) have shown that Barten’s
model could be modified to improve predictions for
peripheral contrast sensitivity and validated this with a
dataset from (Thibos, Still, & Bradley, 1996). Barten’s
model parameters were fitted individually to multiple
datasets from the literature, demonstrating its ability
to explain a wide range of measurements. Despite this,
in our experiments with Barten’s CSF, we found it
unable to explain more recent datasets measured at high
luminance levels (Wuerger et al., 2020), in particular, the
loss of sensitivity at high luminance for low-frequency
achromatic Gabor patterns. This model also lacks the
chromatic component necessary to represent sensitivity
to color modulations.

One of the few works that model chromatic stimuli
was proposed by (Rovamo, Kankaanpää, & Kukkonen,
1999). The authors modeled the low-pass behavior of
spatial CSFs for isoluminant stimuli, as these do not
generate lateral inhibition. The detection mechanism
was modeled as the combination of optical and neural
modulation transfer functions, both affected by noise.
The model explained the physiological mechanisms
that lead to differences between the detection of
achromatic and chromatic gratings and produced
good fits to Mullen’s contrast sensitivity data for
isoluminant stimuli (Mullen, 1985). However, the
model cannot be easily generalized to an arbitrary
color modulation direction and, therefore, cannot
be used to predict data from many of our datasets.
In addition to these chromatic CSF models, some
recent studies suggested that spatiochromatic CSFs
can be inferred from the features of deep neural
networks trained on low- and middle-levels tasks, such
as image-denoising, autoencoding, edge detection
and object recognition (Akbarinia, Morgenstern, &
Gegenfurtner, 2023; Li, Gomez-Villa, Bertalmío, &
Malo, 2022). To demonstrate that, the authors train
a classifier to discriminate contrast and use it as a
decision criterion in a two-alternative-choice contrast
detection experiment. The results, however, show only
a correlation with human data and cannot be used to
give accurate predictions of human sensitivity.

The pyramid of visibility is a popular simplified
model of contrast sensitivity. The original model
(Watson & Ahumada, 2016) accounts for spatial and
temporal frequencies, and background luminance, and
the extended version (Watson, 2018) adds stimulus area
and retinal eccentricity parameters. The pyramid of
visibility establishes linear and log-linear relationships
between contrast sensitivity and the studied parameters
of the stimulus. This linear behavior of the CSF is
only observed at high spatial and temporal frequencies
(above approximately 10 cpd or 10 Hz). A chromatic
extension of the pyramid of visibility, which models
the effect of spatial frequency, temporal frequency,

and luminance for stimuli with modulations in both
achromatic and chromatic space, has also been proposed
(Watson, 2021). This model works by estimating the
projections of the stimulus contrast modulation for
hypothetical achromatic, red-green, and yellow-violet
opponent mechanisms of the visual system. The
sensitivity of each of these three mechanisms is summed
together to predict the overall sensitivity for a given
stimulus.

castleCSF builds and expands upon our previous
models of contrast sensitivity. Wuerger et al. (2020)
presented a new high-dynamic-range CSF dataset, and
a CSF modeled as a function of spatial frequency,
mean luminance, and stimulus size for the three
cardinal chromatic directions of the visual system.
(Mantiuk et al., 2020) extended this work by proposing
two spatiochromatic CSFs that could additionally
account for the chromaticity of the background,
and any modulation direction in a color space.
The model was fitted to the combined data from
five spatiochromatic datasets. In another work, we
proposed stelaCSF (Mantiuk, Ashraf, & Chapiro,
2022), which was limited to achromatic contrast
sensitivity but introduced temporal frequency, and
eccentricity. stelaCSF was fitted to 11 datasets from
the literature. This work combines the models and
approaches used in stelaCSF Mantiuk et al. (2022)
and the postreceptoral spatiochromatic CSF (Mantiuk
et al., 2020). Although Mantiuk et al. (2020) showed
slightly better predictions for the cone-contrast variant
of the model, we selected the postreceptoral variant
as it let us better isolate achromatic and chromatic
mechanisms. We use a data-driven, physiologically
inspired approach to model contrast sensitivity as a
function of six different stimulus properties, which is
the superset of all parameters of the previous models
(Table 1). We do not model the effect of orientation and
the effect of the peripheral visual field (nasal, temporal,
superior, or inferior) because of the lack of available
datasets that are compatible with the datasets included
in this study.

Combined contrast sensitivity
dataset

Our first goal was to create a comprehensive
spatiotemporal chromatic contrast sensitivity model
that accounts for the parameters of the stimuli
(Gabors), which are the most relevant for AR/VR
applications: spatial and temporal frequency,
background luminance and chromaticity, the direction
of contrast modulation in a color space, area, and
eccentricity. As described in “Measurements of contrast
sensitivity,” gathering a single dataset that covers all
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these variables is impractical, so instead we opt to
combine datasets from multiple sources.

Contrast sensitivity has been studied extensively over
many decades, and almost every aspect of contrast
detection has been measured. The main problem is that
all those measurements were done independently, each
measuring a different slice of a multidimensional space
that defines the detection stimuli. Our goal is to select a
set of measurements that covers all stimuli dimensions
of interest, standardize the representation (e.g., use the
same contrast definition and color space), and gather
in a format that could be used to fit a single model that
explains all the data.

Contrast units and color space

As the measure of sensitivity, we use the inverse of
cone contrast, where cone contrast is expressed as:

C = 1√
3

√(
�L
L0

)2

+
(

�M
M0

)2

+
(

�S
S0

)2

, (1)

where �L, �M, and �S are the differential cone
responses for the stimuli and L0, M0, and S0 are the
cone responses for the corresponding background. L,
M, and S cone responses are given by

L = 0.689903
∫

λ

l2(λ)E (λ) dλ, (2)

M = 0.348322
∫

λ

m2(λ)E (λ) dλ, (3)

S = 0.0371597
∫

λ

s2(λ)E (λ) dλ, (4)

where l2, m2, and s2 are 2° CIE 2006 cone fundamentals
(CIE, 2006)1 and E is the measured spectral radiance
emitted from the display.

Most achromatic contrast sensitivity studies report
background luminance (or retinal illuminance) but do
not report the spectral composition or chromaticity of
the background. For those, we assumed L, M, and S
cone responses that corresponded to the D65 illuminant
and the modulation along the first (L+M) dimension
in the DKL color space (Derrington, Krauskopf,
& Lennie, 1984). For chromatic datasets, we either
received the spectral emission characteristic from the
authors or assumed typical emission spectra of the
display used in the study (e.g., emission spectrum of a
CRT monitor).

A common practice when measuring chromatic
contrast sensitivity is to isolate the chromatic
mechanisms of each individual using a heterochromatic
flicker paradigm (Wagner & Boynton, 1972). Since
our goal is to create a model of an average observer,
which is suitable for general applications, we excluded

the datasets that measured different color modulation
directions for each observer.

Datasets

We selected 18 datasets to train and test our model.
Table 2 lists nine datasets with only achromatic stimuli
and the achromatic portions of four datasets that
contained both achromatic and chromatic stimuli.
Table 3 lists five chromatic datasets, along with
the chromatic portions of the four mixed datasets.
Notably, Table 2 contains all the datasets used in
recent work by Mantiuk et al. (2022), along with the
recently collected HDR disc CSF dataset by Ashraf,
Mantiuk, & Chapiro (2023), but excluding the data
from Anderson et al. (1991). We excluded that dataset
because it used a different detection criterion than all
other datasets (discrimination rather than detection)
and its measurements were not comparable. We
also avoided the datasets that were collected for an
artificial pupil, because we are interested in visual
performance for natural viewing. If multiple datasets
in the literature covered a similar range of contrast
sensitivity parameters, we selected those that were
collected for a larger and more representative group of
observers.

Aperture

The type of stimulus used for each dataset is listed
in the last column of each table (Tables 2 and 3).
Most datasets measured contrast thresholds using
Gabor patches. Conversely, some datasets used sine
gratings with rectangular or circular apertures instead
of smooth Gaussian windows. To standardize these
modalities, given a circular aperture with a diameter d,
we assumed the stimulus to be equivalent to a Gabor
patch with σ = d

2 . For rectangular apertures with the
given area a, we assume the stimuli to be equivalent
to a disc aperture with the same area (πσ 2 = a).
Although those relationships may not fully explain
the differences between Gaussian and other apertures,
any inaccuracies are compensated for when fitting
and allowing for a sensitivity shift in each dataset (see
Eq. (32)).

Datasets that were directly obtained from the
authors are marked with asterisks. The remaining
datasets were scanned from the corresponding papers
using the WebPlotDigitizer tool (Rohatgi, 2022). To
ensure this scanning method had sufficiently high
accuracy and repeatability we performed an experiment
where a plot for which the ground truth data was
available (achromatic CSF at 200 cd/m2 from Figure 5
in Wuerger et al., 2020) was scanned five times. The
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mean standard deviation of the log sensitivity values
was found to be very low (0.00534 dB). The root mean
squared error (RMSE) error between the mean of the
5 scans and the ground truth data was also modest at
0.0117 dB, or 0.135% of the original data. This leads
us to conclude that the scanning tool offers a robust
method for gathering data.

Contrast sensitivity function (CSF)

In this section, we explain how the proposed
castleCSF model can predict the detection threshold for
any background color, specified in cone response units
(L0, M0, S0), and for any color modulation direction,
specified as increments of cone responses (�L, �M,
�S). A high-level diagram and description of the
model’s workflow is shown in Figure 1.

To isolate the three color mechanisms, one
achromatic and two chromatic, we transform the
increments to the color-opponent DKL space
(Derrington et al., 1984) assuming a D65 grey
background using the transformation matrix:[

�DAch
�DRG
�DYV

]
=

[ 1 1 0
1 −2.3112 0

−1 −1 50.9875

]
·
[
�L
�M
�S

]
. (5)

To compute contrast, we divide the color-opponent
increments by the background luminance:

�CAch = �DAch

Y
, �CRG = �DRG

Y
, �CYV = �DYV

Y
,

(6)
where Y = L0 + M0. The contrast values of the three
mechanisms are weighted by the sensitivity functions
SAch, SRG, and SYV, and pooled together into a contrast
energy:

E =
√ ∑

c∈{Ach,RG,YV}
(Sc(ρ, ω,Y, a, e)�Cc)2, (7)

Sc( · ) are the sensitivity functions of each mechanism,
which we describe in the next section.

We assume that the contrast is detected when the
contrast energy E = 1. Such a threshold can be found
analytically by introducing a constant t:

�CAch = t �ĈAch, �CRG = t �ĈRG, �CYV = t �ĈYV,

(8)

C
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re
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on

se
s
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kg
ro

un
d)

D
iff

er
en

tia
l c
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e

re
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s 
(s

tim
ul

us
) 

Post-receptoral chromatic
contrast mechanisms

Sensitivity of
achromatic

and chromatic
mechanisms

Contrast
Energy

Contrast
Sensitivity

Detection
Threshold

Stimulus
parameters

Luminance

+

/ ×

×

×

/

/

Figure 1. Contrast encoding and the main processing stages of castleCSF. The color of the background is represented as cone
responses (L0,M0, S0) and the direction in the color space as the increments of cone responses (�L, �M, �S). The direction is
transformed into the DKL color space, and the contrast is computed by dividing by luminance, where luminance is the sum of L0 and
M0. The contrast for the three cardinal color directions is then modulated by the sensitivity of each mechanism (SAch, SRG, and SYV)
and pooled to obtain the contrast energy. We use this energy to find the detection threshold, and finally compute the sensitivity value.
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where (�ĈAch, �ĈRG, �ĈYV) is the contrast at the
detection threshold. If we introduce these expressions
to Eq. (7), we get:

E = t
√ ∑

c∈{Ach,RG,YV}
(Sc(ρ, ω,Y, a, e)�Ĉc)2 = t Ê, (9)

where Ê is the contrast energy at the threshold. Since
we assumed that the contrast energy should be 1 at the
detection threshold, we have Ê = 1 and hence t = E.
This shows us that the detection threshold expressed
as an increment in the color opponent space can be
computed from Eq. (8) as:

�ĈAch = �CAch

E
, �ĈRG = �CRG

E
, �ĈYV = �CYV

E
.

(10)

Assuming a local linearity of the transformation
around the background color (L0, M0, S0), the same
approximately holds for the increment thresholds in the
cone response space:

�L̂ ≈ �L
E

, �M̂ ≈ �M
E

, �Ŝ ≈ �S
E

. (11)

Once we know the cone response increments at the
threshold, we can calculate the sensitivity as the inverse
of the cone contrast from Eq. (1):

S =
√√√√ 3(

�L
L0 E

)2
+

(
�M
M0 E

)2
+

(
�S
S0 E

)2 , (12)

where E is the energy from Eq. (7).
In the following sections, we explain how the

sensitivities of the three mechanisms, SAch( · ), SRG( · ),
and SYV( · ), are modeled.

Mechanism sensitivity

Wemodel the sensitivity of each mechanism, SAch( · ),
SRG( · ) and SYV( · ), by considering the effects of spatial
frequency, temporal frequency, luminance, area, and
eccentricity. The following sections explain how each
factor is modeled.

Temporal frequency
A series of early work by de Lange introduced the

concept of distinct temporal channels in the human
visual system by reporting varying integration time
constants for achromatic and chromatic stimuli at

different flicker rates (de Lange, 1958a; de Lange,
1958b). The site of these mechanisms (retinal, LGN,
cortical, etc.), their inputs (from parvo or magnocellular
pathways), and the number of these temporal channels
is still the subject of an ongoing debate. Results from
psychophysical studies have suggested the presence of
multiple temporally tuned channels (Hess & Snowden,
1992; Kelly, 1983; Metha & Mullen, 1996; Robson,
1966). For near-threshold achromatic stimuli, three
temporal channels have been proposed with two
motion and one flicker detection channel (King-Smith
& Kulikowski, 1975; Mandler & Makous, 1984). We
opted for the two-channel (low-pass/sustained and
band-pass/transient) model supported by studies such
as Tolhurst (1973) andAnderson and Burr (1985) for the
achromatic mechanism because of its relative simplicity,
and because the potential third high temporal frequency
channel likely only detects low spatial frequencies
(Hess & Snowden, 1992). Some temporal CSF data
suggest that the peak of the achromatic transient
channel dependent on luminance (de Lange, 1958a;
Snowden et al., 1995), and shifts toward lower temporal
frequencies as the luminance level decreases. For
chromatic mechanisms, there is evidence of one slow
sustained chromatic channel and a faster transient
channel (Cass et al., 2009; Cropper & Wuerger, 2005;
Gegenfurtner & Hawken, 1996; Metha & Mullen,
1996). We chose not to include the chromatic transient
channels in our model because their magnitudes are
relatively smaller than the chromatic sustained channels
(Cass et al., 2009), and thus contribute little to the
overall sensitivity response. It has also been suggested
that the higher (temporal) frequency chromatic stimuli
might be mediated by luminance mechanisms instead
of a dedicated chromatic transient channel (Dobkins,
Gunther, & Peterzell, 2000).

The impulse responses of the temporal filters
associated with the sustained (S) and transient (T )
channels can be well approximated by the generalized
exponential functions (Mantiuk et al., 2022):

Rc
S (ω) = exp

(
−ωβc

S

σ c
S

)
, ∀c ∈ {Ach,RG,YV}, (13)

and:

RAch
T (ω,Y ) = exp

⎛⎜⎝−

∣∣∣ωβAch
T − (ω0(Y ))βAch

T

∣∣∣2
σAch
T

⎞⎟⎠ , (14)

where ω is the temporal frequency in Hz, and
βc
S , σ c

S , βAch
T , and σAch

T are the parameters of the
model. ω0 is the peak temporal frequency of the
transient channel which was fixed at 5 Hz in stelaCSF
(Mantiuk et al., 2022). In castleCSF, we model this
as a parameter dependent on the mean luminance
level based on data from de Lange (1958a) and
Snowden et al. (1995). We found that the following
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linear relationship between the transient channel peak
frequency and log luminance level explained the data
well:

ω0(Y ) = mAch
ω log10Y + cAch

ω [Hz], (15)

where mAch
ω and cAch

ω are the fitted parameters. This
assumption that, at higher luminance levels, the visual
system is more attuned to higher temporal frequencies
is also consistent with the information flow theory of
early vision proposed by Van Hateren (1993) where
they showed that the signal-to-noise ratio increases as
a function of log light intensity and that the peak of
the neural filter (analogous to the transient channel
in our model) shifts towards higher frequencies with
increasing signal-to-noise ratio (SNR). Ferry-Porter’s
law, which states that the critical flicker fusion frequency
(CFF, the temporal frequency at which flicker can
no longer be perceived) increases linearly with the
logarithm of the luminance level (Ferry, 1892; Porter,
1902), also supports our model because increasing
peak temporal frequency would also result in a higher
cut-off frequency or CFF. The original works by Ferry
and Porter do not suggest any saturation point for
luminance level beyond which the CFF would no longer
increase but the series of studies by Hecht et al. (Hecht
& Verrijp, 1933; Hecht & Shlaer, 1936; Hecht & Smith,
1936) and more recently by Chapiro, Matsuda, Ashraf,
and Mantiuk (2023) have shown that CFF reaches a
saturation point depending on the size and eccentricity
of the stimulus. This would imply a sigmoidal instead of
linear relationship in Eq. (15). However, given limited
data, we opted for a simpler model.

The responses of the temporal channels in our model
are shown in Figure 2. All the sustained channels
are low-pass, while the achromatic transient channel
is band-pass with the peak shifting toward higher
temporal frequencies as the luminance increases.

Spatial frequency
The spatial frequency response of the achromatic

mechanism (SAch in Figure 1) is modeled to be
band-pass. The assumption that the spatial frequency
response for achromatic static gratings is band-pass
is well-supported in visual perception literature.
Studies such as those by (Blakemore & Campbell,
1969) demonstrate that human visual sensitivity is
highest at intermediate spatial frequencies and falls
off at both low and high spatial frequencies. The
magnitude and the location of the peak sensitivity
vary depending on the other properties (luminance,
temporal frequency, size, etc.) of the stimulus. At the
low spatial frequency end, the sensitivity fall-off is
caused by lateral inhibition, but this inhibitory response
is not strong when the low spatial frequency stimulus
is temporally-modulated (Donner & Hemilä, 1996;

0.5 1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

Figure 2. Responses of the temporal channels. The three
sustained (S ) channels are low-pass, while the achromatic
transient (T ) channel is bandpass. The response of this
bandpass channel depends on luminance—shifts towards
higher frequencies as the mean luminance increases.

Tolhurst, 1973) and results in a low-pass response.
We model the spatial frequency responses of both
the sustained and temporal achromatic channels as
log-parabolas (Ahumada & Peterson, 1992):

l c′t (ρ,Y ) = 10
− (log10 ρ−log10 ρcm,t (Y ))2

2
kcb,t , (16)

where c ∈ {Ach, RG, YV} is the index of the
mechanism, t ∈ {S, T } is the temporal channel
(sustained or transient), ρc

m,t controls the position of
the peak of the parabola as a function of luminance
(described in Luminance), and kcb,t controls the
bandwidth of the log-parabola. For achromatic spatial
contrast sensitivity, the parabola is truncated on the low
spatial frequency side of the envelope:

lAch
t (ρ) =

{
1 − kAch

a,t if ρ < ρAch
m,t and lAch′

t < 1 − kca,t
lAch′
t (ρ) otherwise (17)

where, t ∈ {S, T } and kAch
a,t is a function parameter that

controls the decrease in achromatic spatial contrast
sensitivity at low frequencies. Our model fits coincide
with the findings from the literature that the sustained
channel has a band-pass shape with the peak shifting
with different stimuli properties. The fitted value of
the peak spatial frequency parameter for the transient
channel (kAch

ρ,T in Table 5) has a very small value, which
results in a low-pass shape.

The spatial frequency responses of the two chromatic
mechanisms are approximately low-pass, that is, the
sensitivity decreases with increasing spatial frequency.
This is because of the much weaker low-spatial
frequency inhibition in the chromatic detection
pathways (Kelly, 1983; Metha & Mullen, 1996). The
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Figure 3. (A) Change in the critical area with spatial frequency. The critical area parameter for the achromatic sustained channel
saturates at about 0.5 cpd and for the achromatic transient channel saturates at about 2 cpd. For the red-green and yellow-violet
channels, this saturation point lies at a much smaller spatial frequency. (B) Critical number of cycles changing with the spatial
frequency. The value of the critical number of cycles becomes constant with increasing spatial frequency. For the red-green and
yellow-violet channels, our model predicts the critical number of cycles to be constant for approximately the whole range of spatial
frequencies detectable by the human visual system.

roll-off and cut-off frequency of these responses
depends on the other stimulus properties. The low-pass
response of the spatio-chromatic CSF can also be
modeled as a truncated log-parabola l c′

t with the
sensitivity for lower spatial frequencies leveling off
(instead of decreasing like the achromatic CSF) at the
peak frequency. This function is represented as:

l cS (ρ ) =
{
1 if ρ < ρc

m,S (Y )
l c′
S (ρ ) otherwise , (18)

where c ∈ {RG,YV}. The definition of the parameters
is the same as that for the achromatic channel.

Area
The stimuli become easier to detect (the sensitivity

is increased) as their size increases. The contrast
sensitivity increases with stimulus size for achromatic
and chromatic CSFs up to a certain value, known as the
critical area ax. The value of this critical area and the
rate of increase of sensitivity up until the critical area
depends on the spatial frequency of the stimuli and is
modeled in (Rovamo et al., 1993) as

acx,t = ac0,t

1 +
(

ρ

ρc
0,t

)2 [deg2], (19)

where c ∈ {Ach, RG, YV} and t ∈ {S, T }. acx,t is the
maximum value of the critical area and ρc

0,t is the
minimum value of spatial frequency, beyond which
the value of the critical area is no longer constant and
begins to decrease with increasing spatial frequency, for
each colour and temporal channel. Figure 3A shows

the change in the critical area for the four modeled
channels. The plot shows that the detection mechanism
integrates over a smaller area at high frequencies. The
product of a function of this critical area acx,t and
spatial frequency is the critical number of cycles over
which our visual system can integrate. Figure 3B shows
the change in the critical number of cycles as a function
of the spatial frequency.

The size-dependent sensitivity response follows the
model of Rovamo et al. (1993) and is expressed as:

Sc
area,t(ρ, a) = ρ

√√√√ acx,t

1 + acx,t

a

[cyc]. (20)

The effect of size is independent of other factors in
our model. The combined effect of spatial frequency
and stimulus size on the contrast sensitivity is shown
in Figure 4. The log-parabola bandpass shape of the
achromatic sustained channel is more pronounced for
the stimuli of constant size (rather than the constant
number of cycles) where at low spatial frequencies fewer
cycles are presented.

Luminance
In dim light, contrast sensitivity increases in

proportion to the square root of retinal illuminance,
according to the DeVries-Rose law, but in bright
light contrast sensitivity follows Weber’s law and is
independent of illuminance (Blackwell, 1946; Rovamo,
Mustonen, & Näsänen, 1995). Kim et al. (2013) have
shown similar results for chromatic stimuli, with
sensitivity saturating from approximately 50 cd/m2.
The recent sensitivity data from Wuerger et al.

Downloaded from m.iovs.org on 04/20/2024



Journal of Vision (2024) 24(4):5, 1–38 Ashraf, Mantiuk, Chapiro, & Wuerger 12

0.5 1 2 4 8 16 32 64
10-3
10-2

0.1

1

10

(A)

0.5 1 2 4 8 16 32 64
10-3
10-2

0.1

1

10

(B)

Figure 4. Joint effect of spatial frequency and area on sensitivity. (A) Contrast sensitivity of stimuli with four visible cycles at each
spatial frequency. (B) Contrast sensitivity of stimuli with a constant radius of 2° at each spatial frequency.

(2020), measured up to 10,000 cd/m2, shows that the
assumption of sensitivity becoming constant at high
luminances is not entirely accurate for achromatic
stimuli as the sensitivity at very high luminance,
above 1000 cd/m2, starts to drop, especially for
low frequencies. Following Mantiuk et al. (2022),
we model the change of the luminance-dependent
sensitivity for achromatic sustained mechanism as
an initial increase followed by a plateau and eventual
decrease:

SAch
m,S (Y ) = kAch

s1,S

(
1 + kAch

s2,S

Y

)−kAch
s3,S

(
1 − 1 + kAch

s4,S

Y

)−kAch
s5,S

. (21)

The luminance dependence of chromatic sensitivity
is modeled as an increase and then saturation of
sensitivity with increasing luminance:

Sc
m,S (Y ) = kcs1,S

(
1 + kcs2,S

Y

)kcs3,S
, ∀c ∈ {RG,YV}. (22)

For the achromatic transient channel, we again
followed the approach from Mantiuk et al. (2022) and
modeled the change in sensitivity as a linear function of
luminance:

SAch
m,T (Y ) = kAch

s2,TY
kAch
s1,T . (23)

This relationship is supported by the studies from
Swanson, Ueno, Smith, and Pokorny (1987) and
Snowden et al. (1995), showing the linear increase of
sensitivity to flickering stimuli with luminance. For the
luminance ranges tested in the aforementioned studies,
the sensitivity did not saturate with luminance as was
the case for static achromatic and chromatic stimuli.

Luminance also causes the shift of the peak
sensitivity—as the luminance is decreased, the
sensitivity drops but this reduction is stronger for high
frequencies. These effects have different characteristics
for the sustained and transient achromatic, and two

chromatic mechanisms. The effect on the luminance-
dependent frequency shift in the spatial log-parabola
response (Eq. (16)) is modeled as:

ρAch
m,S (Y )= kAch

ρ1,S

(
1 + kAch

ρ2,S
Y

)−kAch
ρ3,S

[cpd],

ρAch
m,T (Y )= kAch

ρ,T [cpd],

ρc
m,S (Y )= kcρ,S [cpd], ∀c ∈ {RG,YV}, (24)

where Y is luminance in cd/m2, kc··· are the parameters
of the model, Sc

m,S/T is the luminance-dependent
sensitivity, and ρc

m,S/T is responsible for the spatial
frequency shift in Eqs. (17) and (18).

We model the effect of luminance rather than
retinal illuminance (in Trolands) because the former is
more readily available in engineering applications, in
which the pupil size (required for calculating retinal
illuminance) is often unknown or difficult to measure.
Figure 5 show the values of the luminance-dependent
parameters in Eqs. (21) to (24). These parameters
only show the effect of luminance and do not include
the shift in the peak sensitivity and peak spatial
frequency induced by the stimulus size. The achromatic
sustained response in Figure 5 a shows the decline in
sensitivity for luminances of greater than 1,000 cd/m2.
The sensitivity of the achromatic transient channel
increases with increasing luminance while both the
chromatic channels transition to Weber’s region above
20 cd/m2. The log-parabola spatial frequency parameter
for the achromatic sustained channel increases with
luminance up to about 500 cd/m2 as shown in Figure 5B
and then remains constant with further increase in
luminance. An increase in this parameter translates
to the shifting of the spatial contrast sensitivity
curve toward higher spatial frequencies. The peak
spatial frequency parameters for the achromatic
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Figure 5. (A) Luminance-dependent shift in sensitivity. The responses of the three sustained channels increase with luminance and
then saturate, with the achromatic sustained channel response showing a decline at very high luminances. The transient channel
response shows a linear relationship with luminance in log-log space. (B) Luminance-dependent spatial frequency shift for the
achromatic sustained channel. The value of the ρm parameter for the remaining channels is independent of luminance.

transient channel and both chromatic sustained
channels are constants and thus independent of
luminance.

Eccentricity
Contrast sensitivity decreases with retinal

eccentricity for achromatic (Robson & Graham, 1981)
and chromatic CSFs (Anderson et al., 1991), along
with other visual performance metrics such as visual
acuity (Anstis, 1974), vernier acuity (Levi, Klein,
& Aitsebaomo, 1985), crowding (Coates, Chin, &
Chung, 2013), and so on. The performance differences
between the foveal and peripheral regions of the
visual field can be explained by the differences in the
neural configuration of photoreceptors in different
regions of the retina. The receptive field size increases
with eccentricity (Hubel & Wiesel, 1962) resulting
in a functional increase in spatial summation with
eccentricity (Johnson, Keltner, & Balestrery, 1978;
Wilson, 1970). The rate of this change depends on
the color and the spatial frequency of the stimuli. If
all other properties of the stimuli are kept constant,
the visual system’s sensitivity to a low-frequency
stimulus will decrease at a lower rate as compared to a
high-frequency stimulus when the stimuli are moved
from the fovea to the periphery across the retina (Virsu
& Rovamo, 1979; Virsu et al., 1982). We have modeled
the sensitivity drop with respect to retinal eccentricity
as a log-linear function of spatial frequency and
eccentricity, following (Watson, 2018):

Sc
ecc(e, ρ ) = 10−(k̂ce1 ρ e+k̂ce2 e), (25)

where c ∈ {Ach, RG, YV}.

Finding a suitable peripheral chromatic contrast
sensitivity dataset to validate our hypotheses proved to
be challenging. The dataset from Hansen et al. (2009)
primarily drove the optimization of the eccentricity-
dependent parameters for the chromatic channel in
our model. We did not include any datasets that used
flicker photometry to isolate the chromatic mechanism
as we could not parse their data in LMS cone contrasts
(Anderson et al., 1991; Mullen & Kingdom, 2002;
Mullen, Sakurai, & Chu, 2005; Newton & Eskew,
2003; Noorlander, Koenderink, Den Olden, & Edens,
1983). Moreover, Mullen et al. (2002) and Mullen et al.
(2005) used very thin sinusoidal grating strips to avoid
detection from neighboring peripheral receptive fields.
The equivalent Gabor assumption (see Aperture) did
not result in good fits for these datasets.

The decrease in sensitivity is nonuniform across the
visual field, with a slower decrease in the nasal direction
(Anderson et al., 1991). To model this effect, the k̂ce1 and
k̂ce2 eccentricity response parameters from Eq. (25) are
calculated as weighted means of sensitivity drop in the
nasal (kcei,nasal) and other directions (kcei).

k̂cei = αkcei + (1 − α)kcei,nasal where i = 1, 2 and

α = min
{
1,

∣∣∣∣θ − 180
90

∣∣∣∣} . (26)

θ is the orientation in the visual field in deg. θ = 0
corresponds with the temporal and θ = 180 to the nasal
directions; that is, it is an angular coordinate for the
right eye. Figure 6 shows the decrease in sensitivity
as the stimulus position on the retina moves from the
fovea to the periphery. This decrease in sensitivity is
steeper for higher spatial frequencies, which implies
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Figure 6. Eccentricity-dependent changes in sensitivity. The
spatial frequency and the retinal orientation (axes: nasal,
temporal, superior, inferior) jointly affect the rate at which the
sensitivity decreases with retinal eccentricity in each color
channel.

that our visual system is less sensitive to stimuli with
finer details in the peripheral region. The slopes of
eccentricity-dependent change in sensitivity also differ
for the three different color channels. This is expected
as the cone density function for different classes of
photoreceptors (Curcio, Sloan, Kalina, & Hendrickson,
1990), as well as the sensitivity of the postreceptoral
pathways for different opponent color channels (Mullen
et al., 2002; Mullen et al., 2005) change at different rates
in the periphery.

Another possible approach to model the effect
of sensitivity could be to include eccentricity as a
parameter in the critical area function in Eq. (19), as
there is evidence of the critical area value increasing
as a function of retinal eccentricity (Johnson et al.,
1978; Wilson, 1970). However, we opted to use the
simpler model from (Watson, 2018) based on the
current availability of datasets. We did not find any
suitable datasets that comprehensively covered the joint
effects of eccentricity, area, or temporal frequency.
Consequently, our model uses a simpler structure and
maintains separability of eccentricity-dependence to
avoid overfitting data that does not capture the joint
effects of stimuli properties.

Combined model
The final sensitivity of our model is given by Eq. (12),

which requires computing the contrast energy according
to Eq. (9). The contrast energy equation relies on
per-mechanism sensitivity functions, given as:

SAch(ρ, ω,Y, a, e)= SAch
ecc (e, ρ)RAch

S (ω)SAch
sal,S (ρ, a,Y )

+SAch
ecc (e, ρ)RAch

T (ω)SAch
sal,T (ρ, a,Y ), (27)

SRG(ρ, ω,Y, a, e) = SRG
ecc (e, ρ)R

RG
S (ω)SRG

sal,S (ρ, a,Y ), (28)

SYV(ρ, ω,Y, a, e) = SYV
ecc (e, ρ)R

YV
S (ω)SYV

sal,S (ρ, a,Y ), (29)

where Sc
ecc(e, ρ ) is given in Eq. (25), Rc

S (ω) are the
temporal filters from Eq. (13) and Eq. (14), and the
combined effects of spatial frequency, stimulus area,
and luminance is modelled as the product of individual
sensitivities:

Sc
sal,t(ρ, a,Y ) = Sc

m,t(Y )Sc
area(ρ, a) l ct (ρ ), (30)

where c ∈ {Ach, RG, YV}, and t ∈ {S, T }. Sc
m,t is the

luminance-dependent change in the peak sensitivity
(Eqs. (21)–(23)), Sc

area is the function of critical
area (Eq. (20)), and l ct is the truncated log-parabola
representing the CSF envelope across spatial frequencies
(Eqs. (17)–(18)).

Figure 7 shows how all the individual components
of our model presented in Eqs. (16) to (29) combine
to predict SAch, SRG, and SYV which feed into our
contrast encoding model (Figure 1) to predict our
visual system’s sensitivity to stimuli modulated along
any color direction.

Extension for edge stimuli
Because some of the stimuli were discs instead of

Gabor patches, an extended version of our model was
needed to predict them. Edge contrast sensitivity has
been shown to be an indicator of the most sensitive
contrast vision channel (Levi & Harwerth, 1982;
Verbaken & Johnston, 1986). In other words, the peak
of the contrast sensitivity envelope (across spatial
frequencies) is proportional to the edge sensitivity of
the visual system. Because a disc forms a circular edge,
we can combine the peak-sensitivity assumption with a
multiple-detectors model from (Ashraf et al., 2023) to
predict the disc sensitivity as:

Sc
disc(ω,Y, a, e) = (2π

√
a)

1
β maxρ (Sc(ρ, ω,Y, adisc, e)), (31)

where, c ∈ {Ach, RG, YV}, Sc is the contrast
sensitivity of the equivalent Gabor patches from
Eqs. (27) to (29), β = 3.01142, and adisc = 2.42437.
The values of these fixed parameters are taken from
(Ashraf et al., 2023).

Model training

Eighteen datasets, listed in Tables 2–3 were used to
train our CSF model. For the datasets that contained
measurements from multiple observers, the mean
values over all observers were used for training. All
data points with sensitivity values of less than 1 were
removed, because these values represent contrast
thresholds greater than 1. This is only possible when
asymmetric contrast modulation is employed. A
per-dataset adjustment factor, sd, was applied to the
sensitivity measurements from each dataset. This
was necessary, as the absolute magnitude of the
sensitivity depended on the measurement conditions,
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Figure 7. Spatiotemporal luminance, area, and eccentricity-dependent contrast sensitivity for individual opponent color mechanisms
(SAch, SRG and SYV). The blocks represent the different components of the model described in Eqs. (16) to (29). The blocks where the
inputs and outputs are dashed lines represent the transient channels and are only relevant for SAch.

psychophysical procedure, specific stimuli used, and
so on. This is compensated via a vertical shift for
the whole dataset in the log sensitivity scale, allowing
for the integration of diverse datasets into a single
robust and generalizable model. The loss function of
the optimization procedure minimized the difference
between the model predictions and the adjusted (via
sd factor) data points from all the datasets, as well as
minimized the base 10 logarithmic value of sd (so the
multiplier is close to 1 and prevents overfitting to any
specific dataset characteristics).

L =
∑
d

∑
i

(
log10 Si,d − sd log10 S̃i,d

)2
+ λ

D

∑
d

(log10 sd )2

(32)

where d = 1, … , D represents the datasets and Si,d
and S̃i,d are the reference and predicted sensitivity

values for the stimulus i in dataset d. We found a
suitable value of the regularization parameter (λ
= 0.01) by trial and error. In all our experiments,
we fix sd = 1 for the reference HDR CSF dataset.
We fit all models using a quasi-Newton method
implemented in Matlab’s fminunc function. To avoid
local minima and implausible model parameters, the
optimization was initialized using the parameters
from stelaCSF (Mantiuk et al., 2022) and the
post-receptoral spatiochromatic CSF (Mantiuk
et al., 2020). The parameters resulting from fitting
castleCSF to all available datasets are reported in
Appendix Tables 5–7.

Comparison with other CSF models

We compare the predictions of castleCSF with
several popular models from the literature, listed
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Table 4. Prediction errors of contrast sensitivity models, tested on the same subset of data points. The errors are reported in the dB
units (see Eq. (33)) as the mean and standard deviation across five-folds (leave-one-out cross-validation). Each column shows the
result for the subset of the dataset, containing variation along selected parameters of the stimuli (selected to match the parameters
supported by CSFs). The value of N is the number of data points included in each subset (testing and training parts). The predictions
are reported for five-fold cross-validation (see text). The symbols denote: ρ, spatial frequency; Y, luminance; a, area; ω, temporal
frequency; e, eccentricity, c, modulation along chromatic color directions., cDKL, modulation along the cardinal color direction
(achromatic, red-green, yellow-violet) only. Asterisks (*) mark the cases where low spatial and temporal frequencies are removed
from the datasets. The bold text indicates the model with the minimum prediction error for that particular parameter set within the
column.

in Table 1. We excluded from this comparison the
model of Rovamo et al. (1999) because it could not be
tested on our datasets (it only works only for select
isoluminant directions).

One challenge of evaluating CSF models is
that contrast sensitivity data cannot be easily split
into datasets used for testing and training. This is
because each dataset typically contains uniformly
spaced samples across a few select slices of the
multidimensional space of stimulus parameters. If a
model is trained on one dataset and tested on another,
each containing different slices of the parameter
space, the error measure is not representative of
the entire space. Instead of doing this, we perform
a five-fold cross-validation within each dataset
(leave-one-out, five splits) and use all datasets for
both training and testing. The same split of test/train
data was used for each compared CSF model.
The error is reported as RMSE, represented in dB
units:

E = 20
√

1
N

∑
d

∑
i

(
log10 Si,d − sd log10 S̃i,d

)2
[dB]

(33)

whereN is the total number of data points. The errors in
Table 4 are reported as means and standard deviations
across all five folds. The number of trainable parameters

of each model is also listed in the table. Note, the
parameters of the final version shown in Tables 5
to 7 are reported for the model fitted to all available
data.

Because most existing CSFs model fewer stimulus
parameters than castleCSF, we tested other models
on the subsets of our complete dataset, shown in
the columns of Table 4. For each subset, we selected
only the datasets that test the dimensions modeled
by the CSFs being tested and fitted each model
on that subset. In particular, all the models can
predict contrast sensitivity changes along spatial
frequency and luminance, and so these properties
were included in every comparison. The CSFs that
did not model temporal frequency were tested only
on static stimuli (0 Hz). Similarly, the CSFs that
did not model the effect of eccentricity were tested
on foveal (0° retinal eccentricity) stimuli only. In
the comparisons where the effect of stimulus size
was not tested, we kept only either the fixed size
or the fixed cycles subsets from each dataset. The
comparisons with chromatic datasets consisted of
either stimulus modulated only along the cardinal
color directions (cDKL) or modulations along any
arbitrary color directions over any background
color (c). The number of data points (N) included
in each comparison is listed in the header of the
table.

The chromatic pyramid of visibility (Watson, 2021)
required special treatment because this model is not
intended to predict sensitivity for low spatial and
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Figure 8. Achromatic contrast sensitivity predictions by castleCSF along five dimensions of stimuli. The unit vector of the incremental
cone response (�L, �M, �S) of the stimuli is: (0.6612, 0.3388, 0). The contrast sensitivity response predictions are shown in the
five columns with spatial frequency, temporal frequency, luminance, eccentricity, and size as independent variables respectively. In
each column, the four plots show the sensitivity predictions with each of the remaining four model dimensions as the second
independent variable. The remaining parameters are fixed as spatial frequency = 1 cpd, temporal frequency = 0 Hz, luminance =
30 cd/m2, eccentricity = 0°, stimulus size (radius) = 1°. The rows and columns are notated as a-b and i-v respectively for ease of
reference in the discussion.

temporal frequencies. For that reason, we report the
results of the test with and without (column with
ρ*, ω*) (Table 4) low-frequency stimuli. We excluded
the stimuli for which ρ < 4 cpd and ω < 4 Hz,
unless it was isoluminant chromatic stimuli, in which
case we excluded stimuli for which ρ < 1 cpd and
ω < 1 Hz.

Instead of proposing a complex physiologically
inspired model, we could fit a neural network to
the data, which may provide an even better fit. We
experimented with that idea and fitted a multilayer
perceptron (MLP) using the same training/test
data split as other models. The MLP had 6 layers,
120 neurons each (the architecture with the lowest
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Figure 9. Red-green contrast sensitivity predictions by castleCSF along 5 dimensions of stimuli. The unit vector of the incremental
cone response (�L, �M, �S) of the stimuli is: (0.3388, −0.3388, 0). The description of the plots is the same as in Figure 8.

validation loss). When fitted to all datasets, the error
was larger than for castleCSF (5.8 dB), but more
important, the MLP could not predict plausible trends
or extrapolate the data. The MLP predictions can
be found at the project page.2 This failure of general
function approximations can be explained by the
scarcity and non uniform distribution of contrast
sensitivity data. Physiologically inspired models
introduce regularization that helps them converge to
plausible solutions.

castleCSF produces the lowest prediction errors
for the majority of the comparisons in Table 4. The

prediction error is within the range expected from
inter-observer variation (between 3.0 and 3.9 dB
or approximately one-half of an octave) (Dakin &
Turnbull, 2016). As a reference, the expected inter
observer variation for the selected datasets is listed
in the rightmost column of Table 2. Notably, most
CSF models result in significantly larger errors, even
when tested on a much more restricted portion of the
dataset. A notable exception is Mantiuk et al. (2020)’s
postreceptoral spatiochromatic model, which is used as
a component of castleCSF. However, this model does
not cover temporal frequency and eccentricity. Overall,
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Figure 10. Yellow-violet contrast sensitivity predictions by castleCSF along 5 dimensions of stimuli. The unit vector of the incremental
cone response (�L, �M, �S) of the stimuli is (0.0115, 0, 0.0115). The description of the plots is the same as in Figure 8.

no existing CSF can account for the same number of
stimuli parameters and provide the same accuracy of
prediction produced by castleCSF.

Model predictions

Cross-sections of castleCSF’s predictions for all
combinations of modeled parameters, when trained on
the full dataset, are shown in Figures 8 (achromatic), 9
(red-green), and 10 (yellow-violet). For each subplot,
the vertical axis depicts sensitivity, and each column
models changes along spatial frequency, temporal

frequency, luminance, eccentricity, and stimulus size
respectively as the independent variable. Within each
column, rows show the joint effect of the respective
independent variable and each of the remaining
variables on contrast sensitivity.

Aggregate prediction errors for different two-
dimensional cross-sections of the 5-dimensional
parameter space are shown in Figure 11, along with
the sample density of our combined dataset. The
upper two rows in the figure represent predictions of
achromatic data (N = 779), and the lower two show
the remaining chromatic data points (N = 1,508). The
color bar in the plots represents the prediction error
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Figure 11. castleCSF prediction errors along with data points density for different two-dimensional projections of the five-dimensional
parameter space. Top two rows: achromatic data. Lower two rows: chromatic data. The upper and lower boundaries of the bins are
indicated by the corresponding tick labels on the axes. For discs, static and foveal stimuli, the whole bin represents spatial frequency
= 0 cpd, temporal frequency = 0 Hz or eccentricity = 0°, respectively. The color bar in the plots represents the prediction error in
decibels (dB) calculated using the error function in Eq. (33). The size of the circles represents the number of data points for each
combination of parameter values.

in decibels (dB) calculated using the error function
in Eq. (33).

Discussion

In this section, we discuss castleCSF predictions
of individual datasets and how they relate to known

psychophysical evidence. The predictions reported in
this section pertain to the model fitted to the complete
dataset, with the parameters listed in Tables 5 to
7 in the Appendix, using a per-dataset adjustment
(sd in Eq. (32)). The colored numbers shown in the
Figures 12 to 27 denote the fitting error for the
corresponding subset of conditions, reported in dB
units.
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Figure 12. Predictions for (a) the Modelfest ((Watson, 2000)) and (b) Colorfest (Wuerger et al., 2002) dataset. (A) Modelfest: The
stimuli were horizontally oriented achromatic static Gabor patches with either constant size (Gaussian envelope of σ = 0.5°) or
constant cycles (2 visible cycles approximately) tested at 30 cd/m2. The viewing mode was binocular with natural pupils. (B) Colorfest:
The stimuli were static horizontal Gabor patches of fixed size (σ = 0.5°). The color modulations were C1: black-white, C2:
reddish-greenish, C3: yellowish green-violet, C4: greenish-Pink, C5: yellow-blue, C6: dark green-light pink, C7: dark yellow-light blue.
C1, C2, and C3 were approximately the cardinal color directions of the human visual system. The background was D65 grey at
40 cd/m2. The viewing mode was binocular with natural pupils. The colored numbers shown in the plot denote the prediction error, in
dB, per subset of conditions.
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Figure 13. Predictions for the HDR-VDP CSF (Mantiuk et al., 2011) dataset. The stimuli in the subplot (A) were vertically oriented
achromatic static Gabor patches with a Gaussian envelope of σ = 1.5° shown at different luminance levels. The two subplots (B) show
measurements from similar stimuli of different sizes with spatial frequencies of 1 and 8 cpd. The viewing mode was binocular with
natural pupils.

Sensitivity attenuation at high spatial
frequencies

Our model predicts that contrast sensitivity decreases
logarithmically with spatial frequency for both
achromatic and chromatic mechanisms in the high
spatial frequency region, as depicted in the plots in
column (i) of Figures 8, 9, and 10. This attenuation can
be observed for achromatic datasets in Figures 12A,
12B (C1), 13A, 14A, 15, and 16(L+M). The higher
frequency decrement can also be observed in chromatic

datasets in Figures 12B (C2-C6), 16 (L-M, and
S-(L+M)), and 17 to 20.

For fixed-cycle stimuli and foveal vision, the high-
spatial frequency attenuation can be solely explained by
the optics of the eye (Banks, Geisler, & Bennett, 1987;
Campbell & Green, 1965; Rovamo et al., 1993).
Moreover, it has been shown that the slope of the MTF
of the human eye changes with different pupil sizes
(Deeley, Drasdo, & Charman, 1991; Van Meeteren,
1974; Watson, 2013), which in turn contract with
increasing luminance levels. It follows that for
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Figure 14. Predictions for the (Robson, 1966) dataset. The stimuli were achromatic sinusoidal gratings with rectangular apertures
viewed at 20 cd/m2. The area of the gratings was fixed at 6.25 deg2.

0.
5 1 2 4 8 16 32

Spatial frequency [cpd]

1

10

102

S
en

si
tiv

ity

5

4.51.6

3.17

4.75.2

0o 5o 10o

15o 20o 25o

30o

(A)

0.5 1 2 4 8 16 32
Spatial frequency [cpd]

1 Hz

2 3

4.4

4.3

3.9

0.32

0.5 1 2 4 8 16 32
Spatial frequency [cpd]

18 Hz

1.4
2.6

2.4

0.844.3

0.0o

1.5o

4.0o

7.5o

14.0o

30.0o

(B)

Figure 15. Predictions for (A) the Virsu and Rovamo (1979) and (B) Virsu et al. (1982) dataset. (A) The stimuli were static vertical
achromatic sinusoidal gratings with circular apertures viewed at 10 cd/m2. The size of the aperture was fixed at a 2.5° radius. (B) The
stimuli were horizontal achromatic sinusoidal gratings with semi-circular apertures viewed at 10 cd/m2. The area of the gratings was
fixed at 1.57 deg2. The stimuli at different retinal eccentricities were moved along the horizontal retinal meridian in the nasal visual
field in both datasets and the viewing mode was monocular with natural pupils.

fixed-cycle stimuli in natural viewing conditions, the
slope of the CSF at high spatial frequencies should
change with the pupil diameter and, therefore, with
luminance. Unfortunately, we do not have a dataset that
could demonstrate this effect (fixed-size HDR-CSF was
only measured up to 6 cpd). As a result, this effect is
not captured by our model, which predicts this slope to
be independent of luminance level.

It is well-known that we are less sensitive to high
spatial frequencies in the chromatic (isoluminant)
color directions, owing to the lower resolving power
of chromatic pathways (Mullen, 1985). Given that,
it may come as a surprise that the ColorFest data

shown in Figure 12B and HDR-CSF in Figure 16 show
higher sensitivity for chromatic L-M and C2 data than
for the achromatic L+M and C1 data—in particular
at high spatial frequencies. This can be attributed to
two issues: First, the cone contrast units, which define
the sensitivity values, use an arbitrary scale for each
color direction, and therefore the sensitivity values
for the L+M direction cannot be directly compared
to those for the L-M one, or any other. We choose
the scale where the sum of (CIE, 2006) L and M
cone responses is equal to the Stockman and Sharpe
luminous efficiency function (Sharpe, Stockman,
Jagla, & Jägle, 2005) and the resulting DKL responses
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Figure 16. Predictions for the HDR CSF Wuerger et al. (2020) dataset. The stimuli were static vertical Gabor patches of fixed cycles
(two visible cycles approximately). The three color modulations represent the cardinal color directions of the human visual system.
The viewing mode was binocular with natural pupils.

reflect the length in this contrast space (Capilla, Malo,
Luque, & Artigas, 1998).

In such a scale of cone fundamentals, the red-green
mechanism has the strongest response (Chaparro,
Stromeyer, Huang, Kronauer, & Eskew, 1993; Cole,
Hine, & McIlhagga, 1993; Eskew, McLellan, &
Giulianini, 1999; Kim, Reynaud, Hess, & Mullen,
2017), that is, a small change in cone contrast space
would produce a large response in the red-green
opponent color direction quantitatively compared to
that of the achromatic or yellow-violet early vision
mechanism. As a result, the perceived magnitude
of contrast differs across the three dimensions of
the DKL space (Switkes & Crognale, 1999). Second,
neither of the two experiments attempted to isolate
the chromatic mechanism of each participant (e.g.,
via the use of heterochromatic flicker). Therefore,
the stimuli in both datasets likely contain contrast
that could be detected by achromatic mechanism.
For example, in Figure 12 b(C2), the spatial cut-
off frequency is predicted to be at least 32 cpd,
while (Mullen, 1985) estimates the cut-off for an
isolated red-green mechanism to be approximately
12 cpd.

Lateral inhibition of low spatial frequencies

Contrast sensitivity is decreased for static achromatic
patterns at low spatial frequency. This effect is
attributed to lateral inhibition (Barten, 1999)—the
mechanism that helps us adapt to and perceive scenes
spanning very large ranges of luminance. This results
in a band-pass shape of the CSF for the achromatic
modulation direction. When temporal frequency is
increased, the effect of lateral inhibition is reduced
and the CSF gradually becomes low-pass, as seen in

Figure 14A and Figure 15B. (Donner & Hemilä, 1996)
modeled this band-pass to low-pass spatiotemporal
response as a difference-of-Gaussian receptive field
model and concluded that the spatial and temporal
integration mechanisms are not separable. castleCSF
models this effect by gradually shifting the response
from a (band-pass) sustained to a (low-pass) transient
channel.

There is no evidence of lateral inhibition in the
isolated chromatic mechanism (Kelly, 1983; Metha &
Mullen, 1996; Mullen, 1985). However, because most
of our datasets were measured for the cardinal color
directions with an expected intrusion of achromatic
contrast, we can see a small amount of attenuation for
lower frequencies in Figure 16 (L-M, S-(L+M)) and in
Figures 19 and 20.

As the eccentricity of the stimulus increases, the
peak of the CSF’s band-pass shape shifts toward lower
frequencies, as can be seen in Figure 15. This shift seems
to be much smaller for the smaller flickering patterns
used for the data in Figure 15B than for larger static
patterns used for the data in Figure 15A. castleCSF
does not currently model this difference.

Temporal response

The temporal response of the visual system is mostly
determined by the photoreceptors (Hood & Birch,
1993), which restrict the highest temporal frequency
that can be detected. This frequency is typically
modelled as the CFF, corresponding with the temporal
frequency at which the sensitivity curve crosses the
S = 1 line. We did not include in our datasets any
CFF measurements—we found modelling this type
of data to be highly problematic as it is typically
reported for flickering disks rather than Gabors. While
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Figure 17. Predictions for (Van der Horst & Bouman, 1969) dataset. (A) Static stimuli at different luminance levels. (B) (Top) Temporally
modulated stimuli at high luminance level. (Bottom) Temporally modulated stimuli at low luminance level. The stimuli were Gabor
patches of fixed size (14.84 deg2). The three columns show results from the three color modulations tested: yellow-to-blue and
red-to-bluish-green over grey (E: equal-energy point) background, and red-to-green over yellow (Y) background. The stimuli were
viewed monocularly through an artificial pupil of 2 mm in diameter.

the generalization of Gabors and disks shown in
Eq. (31) works well for static disks, we found it does
not seem to extend well to flickering disks. However,
our two-channel model provides a good explanation of
the available sensitivity data for achromatic patterns,

shown in Figure 14B, 21, and 22, and for chromatic
patterns, shown in Figure 23. It should be noted that
the band-pass shape and reduced sensitivity at low
spatial and temporal frequencies is caused by lateral
inhibition, present in the sustained channel.
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Figure 18. Predictions for five centers (Xu et al., 2020) dataset. Larger ellipse sizes correspond with lower sensitivity and vice versa.
The stimuli were large static Gabor patches with Gaussian envelope of σ = 9.3° modulated over 6 color directions in u’v’ space on
grey (72 cd/m2), green (24 cd/m2), red (14.1 cd/m2), blue (8.8 cd/m2), and yellow (50 cd/m2) backgrounds. The viewing mode was
binocular with natural pupils.
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Figure 19. Predictions for the Kim et al. (2013) dataset. The stimuli were horizontal static Gabor patches with a Gaussian envelope of
σ = 3° for the 0.25 cpd stimuli and σ = 1.5° for all other spatial frequencies shown at different luminance levels. The color
modulations were C2: reddish-greenish, C3: yellowish green-violet, C6: dark green-light pink, and C7: dark yellow-light blue. C1, C2,
and C3 were approximately the cardinal color directions of the human visual system. The background was D65 grey. The viewing
mode was binocular with natural pupils.

Effect of mean luminance

The luminance-dependent achromatic contrast
sensitivity response can be generally divided into three
regions 1) the low-luminance region following the
DeVries-Rose law, 2) the mid-to-high luminance region

following Weber’s law, and 3) the very high luminance
region in which sensitivity is reduced. It should be
noted that the categorization of the DeVries-Rose
and Weber regions are merely approximations, and
the measured responses are the combined result of
several visual mechanisms and adaptations at work.
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Figure 20. Predictions for the Lucassen et al. (2018) dataset. The stimuli were large static Gabor patches with Gaussian envelope of σ
= 9.45° modulated along four color directions in u’v’ space on B1 (2600K, orange appearance), B2 (3,700K, yellow appearance), and
B3 (5600, cool/daylight white appearance) backgrounds. The stimuli were shown at 108 cd/m2. The psychophysical task was
orientation discrimination.
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Figure 21. Predictions for the Laird et al. (2006) dataset. The
stimuli were achromatic vertical Gabor patches of fixed size
(Gaussian envelope of σ = 2.46°) displayed at 60 cd/m2, which
were viewed binocularly with natural pupils.

García-Pérez and Peli (1997) and Rovamo, Näsänen,
and Mustonen (1997) have discussed some nuances of
using the Weber law behavior as a proxy for different
physiological mechanisms.

The three different regions can be observed in plots
(a-d)(iii) in Figure 8. The chromatic CSFs present
only the DeVries-Rose and the Weber region as shown
in plots (a-d)(iii) in Figures 9 and 10. The linear log
sensitivity response with respect to log luminance obeys
the DeVries-Rose law, which states that the incremental
threshold contrast is proportional to the square root
of the background intensity (De Vries, 1943; Rose,
1948). In the log-log scale, this square root relationship
becomes linear, with an approximate slope of 0.5.
With a further increase in mean luminance, this slope
starts becoming flatter in accordance with Weber’s
law, implying that contrast becomes independent
of mean luminance (Weber, 1831). The point of

transition between the DeVries-Rose region and the
Weber region depends on the spatial and temporal
frequencies of the stimuli. Looking at the predictions
in plot (a)(iii) in Figure 8, this transition happens at
lower luminances for lower spatial frequencies, and at
higher luminances for higher spatial frequencies. This
spatial frequency-dependent transition is also shown
in the work of Rovamo et al. (1995) and is predicted
well by our model, as demonstrated in analysis over
datasets from HDR-VDP CSF (Mantiuk et al., 2011)
(Figure 13a) and HDR-CSF (Wuerger et al., 2020)
(Figure 16).

For very high luminance levels (above 2,000 cd/m2),
our model predicts a decrease in contrast sensitivity
which deviates from Weber’s law. This prediction is
mainly based on the HDR-CSF dataset (Figure 16),
which shows that achromatic contrast sensitivity
decreases for luminance levels above 2,000 cd/m2. This
reduction in contrast sensitivity cannot be explained
by photopigment bleaching (Rovamo et al., 1997),
because bleaching would proportionally reduce the
response to both the background and the stimulus and
thus cannot cause a reduction of retinal contrast, nor
can it explain the lack of sensitivity reduction in the
chromatic L-M and S-(L+M) modulation directions
as the effect of bleaching would only be dependent on
the luminance level and would reduce both achromatic
and chromatic contrast sensitivity for the same light
level. This effect cannot also be explained by increased
diffraction due to the contraction of the pupil at high
luminance levels, as the effect is most salient at low
frequencies, which are least affected by diffraction. We
speculate this decrease in sensitivity may be caused
by the lateral inhibition mechanism, because it can be
observed mostly at low frequencies for the achromatic
mechanism, where this type of inhibition is expected to
be strongest. We do not have any data to support this
hypothesis, but Xin and Bloomfield (1999) have shown
that the extent of lateral inhibition is dependent on the
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Figure 22. Predictions for the Snowden et al. (1995) dataset. The stimuli are achromatic Gabor patches modulated in both space and
temporal domains. The Gaussian envelope size of the lower spatial frequencies up to 5 cpd is σ = 1.6°, while that of 10 cpd and 20
cpd is 0.8° and 0.4°, respectively. The lowest frequency (0.1 cpd) shown in this plot was actually a 0 cpd Gaussian blob, but we found
that our model could predict this by assuming it as a Gabor patch with half a sinusoidal cycle visible. The viewing mode was binocular
with natural pupils.
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Figure 23. Predictions from the Kong et al. (2018) dataset. The stimuli were static discs modulated along four color directions in u’v’
space on nine different backgrounds. The approximate colors of the nine backgrounds are jade green, violet, rose red, rust orange,
cornflower blue, magenta, light pink, dull violet, and dull rose red respectively. The radius of the discs was 5° and the mean luminance
was 35 cd/m2. The viewing model was binocular with natural pupils.

mean luminance level, with the maximum coupling
between horizontal cells (and consequently the strength
of contrast enhancement by lateral inhibition) occurs at
moderate ambient light levels and extreme dark or light
adaptation causes this effect to be weakened.

Foveal and peripheral contrast sensitivity

Contrast sensitivity decreases with eccentricity
as shown in plots (a-d)(iv) in Figures 8, 9, and 10.
The slopes of these linearly decreasing functions
are dependent on the spatial frequency. The rate of
sensitivity decrement with retinal eccentricity is slower
for lower spatial frequency stimuli compared to higher
spatial frequency ones, as predicted in plots (a)(iv)
for the achromatic (Figure 8) and yellow-violet
(Figure 10) channels. In the case of the red-green
channel (Figure 9), our model does not predict any
spatial frequency dependence on the slope of sensitivity
reduction with respect to retinal eccentricity. The
predictions for achromatic stimuli are in line with

the data from (Virsu & Rovamo, 1979) (Figure 15A)
and (Virsu et al., 1982) (Figure 15B). At lower spatial
frequencies, the difference between their data measured
at different eccentricities is smaller, depicting a lower
rate of sensitivity decline. The dataset from Wright and
Johnston (1983) also shows similar findings (Figure 24)
for four different spatial and temporal frequencies.
The predictions for the two chromatic channels in
our model are entirely driven by the Hansen et al.
(2009) dataset (Figure 25). Our model could well
predict the achromatic and yellow-violet stimuli from
this dataset but was less accurate in predicting the
red-green stimuli at higher retinal eccentricities. This
could be explained by the different distribution of cells
picking up red-green versus yellow-violet signals across
the periphery (Mullen et al., 2002). The sensitivity
of the red-green opponent mechanism also declines
at a much higher rate compared to the achromatic
and yellow-violet mechanisms (Mullen et al., 2002;
Mullen et al., 2005). More contrast sensitivity data
for chromatic stimuli measured in the periphery are
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Figure 24. Predictions for the Wright and Johnston (1983) dataset. The stimuli were vertical achromatic sinusoidal gratings with
rectangular apertures tapered at the edges viewed at 100 cd/m2. The area of the gratings was 36 deg2 for 0.25 cpd, 2.345 deg2 for 2
and 6 cpd stimuli, and 0.75 deg2 for 9 cpd stimuli. The stimuli at different retinal eccentricities were shown along the vertical retinal
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Figure 25. Predictions for the (Hansen et al., 2009) dataset. The
stimuli were 4° diameter discs modulated along the three
cardinal color directions in the DKL colorspace.

required to correctly model these differences. Another
interesting direction would be to add the effect of
photoreceptors other than cones to predict chromatic
contrast sensitivity in the periphery. Though Weale
(1953) ruled out the contribution of rods in chromatic

sensitivity in the periphery, Horiguchi, Winawer,
Dougherty, and Wandell (2013) have shown that
peripheral contrast thresholds are better explained by
a four-receptor model for high-luminance stimuli and
speculated that this fourth receptor could be driven by
melanopsin signals. More data is needed to correctly
test these hypotheses in our model.

Spatial summation

Contrast sensitivity increases monotonically with
stimulus size until a critical area is reached, following
Riccó’s law (Riccó, 1877). The sensitivity remains
constant for stimuli larger than this critical area as
shown in plots (a-d)(v) in Figures 8, 9, and 10. The value
of the critical area decreases with the spatial frequency
of the stimulus for all three chromatic directions, as
predicted in plots (a)(v) in Figures 8, 9, and 10. This
is in agreement with the data from HDR-VDP CSF,
shown in Figure 13B, and from Rovamo et al. (1993),
shown in Figure 26. The HDR disc CSF dataset, shown
in Figure 27 was measured for smaller sizes and thus
the saturation at the critical area is not observed for
these measurements. Although we lack a single dataset
that would test the effect of size on the detection of
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Figure 26. Predictions for the Rovamo et al. (1993) dataset. The stimuli were achromatic static vertical cosine gratings of different
spatial frequencies with square apertures of varying areas displayed at 50 cd/m2. The viewing mode was binocular with natural pupils.
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Figure 27. Predictions for HDR disc CSF (Ashraf et al., 2023) dataset. The stimuli were static discs modulated from a grey background
to either white (L+M), pinkish red (L-M), or violet (S-(L+M)). The viewing mode was binocular with natural pupils.

chromatic patterns, the union of all datasets provides a
good sampling of chromatic patterns of different sizes,
as shown in Figure 11.

Note that we have a separate spatial summation
model for the disc stimuli, where we integrate over
the circumference of the disk (Eq. (31)). This model
does not account for the likely saturation of such a
summation, as we do not have data to model this
effect.

Our model assumes that the effect of stimulus size
is independent of temporal frequency, luminance, and
eccentricity, as shown in plots (b-d)(v) in Figures 8, 9,
and 10. The independence of spatial summation from
luminance agrees with the data from HDR-VDP CSF
as shown in Figure 13B. For both spatial frequencies,
we can see that the shape of the curves formed by
the data points does not change between luminance
levels.

Applications of the CSF

This section highlights engineering applications of
castleCSF and shows an example in which it is used to
assess the visibility of distortions caused by chroma
subsampling.

One of the main goals of creating castleCSF was
to use it as a core component of the ColorVideoVDP
(Mantiuk, Hanji, Ashraf, Asano, & Chapiro, 2024).
This visual difference metric is used to compare
a distorted image or video to its reference and
predict the quality degradation due to display or
coding distortions. Figure 28 shows an example in
which the metric predicts the quality drop due to
chroma subsampling, a computational technique
commonly used in video and image compression.
The effect of subsampling of both chroma channels
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Figure 28. castleCSF is a fundamental building block of the ColorVideoVDP metric that can predict visible differences in complex
images and videos. This figure shows a prediction of the visibility of chroma subsampling. (A) Reference image. (B) Plot of the metric’s
prediction scaled in just objectionable differences (JODs) (higher values denote higher quality) against the chroma subsampling
factors, showing that stronger subsampling leads to higher perceived distortion, (D and F) Chroma-subsampled versions at decreasing
spatial resolutions of the chroma channels (1/2, and 1/4 respectively), (E and G) Heatmaps of predicted small (blue to red)
perceivable distortions, for each subsampled image, the scale of the distortions can be seen in (C). Note that distortions in areas
without luminance contrast (such as the text isoluminant to the sky, marked with a red box in the reference image) are especially
prone to distortion from chroma subsampling. For visual assessment, these images should be viewed from a distance of 40 cm, with
each image width adjusted to approximately 9 cm.

in the CIELAB color space, the predicted visual
difference maps, and the overall quality drop scaled
in the just objectionable difference units (Perez-Ortiz
et al., 2019) are presented. We can observe that

chroma subsampling results in different levels of
visible distortions across the image, with isoluminant
areas, which lack luminance contrast, being the
most affected. Modeling the spatiochromatic
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CSF, as done by castleCSF, is critical for this
application.

CSF models have found many more applications in
engineering. Contrast detection models were used to
derive the DICOM grayscale function used in medical
monitors (NEMA, 2003), and later again to define the
encoding used for high-dynamic-range video standards
(ITU, 2017; Mantiuk, Krawczyk, Myszkowski, &
Seidel, 2004; Miller, Nezamabadi, & Daly, 2013). CSFs
are used to characterize the performance of electronic
displays (SID, 2022), including the visibility of flicker
and display non-uniformity. Contrast sensitivity models
are also employed to optimize image coding (Zeng,
Daly, & Lei, 2002), match contrast visibility when
reproducing high dynamic range images (Mantiuk,
Daly, &Kerofsky, 2008; Tariq et al., 2023;Ward-Larson,
Rushmeier, & Piatko, 1997), assess image quality
(Aydin, Čadík, Myszkowski, & Seidel, 2010; Chandler,
2010; Haun & Peli, 2013; Mantiuk et al., 2011; Zhang
& Wandell, 1997), or optimize rendering in real-time
computer graphics (Jindal, Wolski, Myszkowski, &
Mantiuk, 2021; Luebke & Hallen, 2001). Overall, given
the range of applications, it is desirable to build a
general model that can explain contrast sensitivity for
the large range of conditions encountered in these and
similar applications.

The CSF is also useful for applications in optometry,
for example, the optical and neural limits of vision
can be inferred by contrast sensitivity measurements
(Amesbury & Schallhorn, 2003). Spatial contrast
sensitivity also provides a direct measure of visual
performance (Owsley & Sloane, 1987), which is very
useful for clinical evaluations and for use as a diagnostic
tool for the detection of visual disorders (American
Academy of Opthamology, 1990).

Conclusions

castleCSF is a practical model, intended to
summarize and predict the average observer detection
data for a wide range of values explored in the literature.
It is mainly intended for engineering applications, in
which similar models (Barten, 1999) found an ample
range of use. The distinct features of castleCSF are
that it explains a larger number of stimulus parameters
than other models and that a single model (with the
same set of parameters) can predict a broad range
of measurements from the literature. Although our
approach could potentially mask subtle differences
between datasets that occur under specific conditions
and are unique to individual datasets, we believe that
the benefits of incorporating a large number of datasets
outweigh the limitations considering our model’s broad
application.

Our work also helps identify the gaps in the existing
contrast sensitivity literature as shown in Figure 11,
and can help direct future research to address these
limitations. The missing datasets include edge CSF data
outside the fovea, high luminance temporal CSF data
for chromatic stimuli, low luminance parafoveal data,
low spatial frequency chromatic temporal flicker, and
data for chromatic temporal flicker in the periphery.
In the case of chromatic parafoveal datasets, there is
an additional challenge of representing the stimulus in
cone contrast space, as the standard cone fundamentals
are designed for foveal stimuli. Models of suitable
modifications representing the changes in cone densities
(Curcio et al., 1990; Moreland & Cruz, 1959; Volbrecht,
Shrago, Schefrin, & Werner, 2000) and strength of
the cone responses (Sakurai & Mullen, 2006; Stabell
& Stabell, 1996) in the periphery exist. We aim to test
different peripheral cone contrast metrics and the
resulting peripheral opponent-color contrast channels
in future iterations of this work.

Keywords: contrast sensitivity functions, color vision,
computational modeling
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Footnotes
1Tabulated cone fundamentals can be found at http://cvrl.ucl.ac.uk/.
2Project page: https://www.cl.cam.ac.uk/research/rainbow/projects/
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0,S = 0.7023, kAcha,T = 0.0002412, kAchb,T = 2.676,

aAch0,T = 3.816, ρAch
0,T = 3.014,

Temporal channels βAch
S = 1.331, σ Ach

S = 10.58, βAch
T = 0.1898, σ Ach

T = 0.08448,mAch
ω = 2.415, cAchω = 4.704,

Luminance kAchs1,S = 56.49, kAchs2,S = 7.547, kAchs3,S = 0.1445, kAchs4,S = 5.583e − 7, kAchs5,S = 9.669e9, kAchρ1,S = 1.781,
kAchρ2,S = 91.57, kAchρ3,S = 0.2567, kAchs1,T = 0.1934, kAchs2,T = 2748, kAchρ,T = 0.0003167,

Eccentricity kAche1 = 0.0189, kAche2 = 0.02399, kAche1,nasal = 0.008136, kAche2,nasal = 0.04007

Table 5. The fitted parameters for SAch.

Part Parameters

Size and spatial freq. kRGb,S = 2.421, aRG0,S = 2.816442e3, ρRG
0,S = 0.0711058,

Temporal channels βRG
S = 1.156, σ RG

S = 16.43,
Luminance kRGs1,S = 681.4, kRGs2,S = 38, kRGs3,S = 0.4804, kRGρ,S = 0.01784,
Eccentricity kRGe1 = 2.05e − 69, kRGe2 = 0.05914, kRGe1,nasal = 0.1811, kRGe2,nasal = 2.896e − 5

Table 6. The fitted parameters for SRG.

Appendix: Fitted parameters

Tables 5–7 contain the fitted parameters of castleCSF.

Part Parameters

Size and spatial freq. kYVb,S = 2.682, aYV0,S = 2.827890e7, ρYV
0,S = 0.000635093,

Temporal channels βYV
S = 0.9691, σ YV

S = 7.15,
Luminance kYVs1,S = 166.7, kYVs2,S = 62.9, kYVs3,S = 0.4119, kYVρ,S = 0.004258,
Eccentricity kYVe1 = 0.008066, kYVe2 = 0.003569, kYVe1,nasal = 0.01107, kYVe2,nasal = 5.858e − 141

Table 7. The fitted parameters for SYV.
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