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Humans can rapidly identify materials, such as wood or
leather, even within a complex visual scene. Given a
single image, one can easily identify the underlying
“stuff,” even though a given material can have highly
variable appearance; fabric comes in unlimited
variations of shape, pattern, color, and smoothness, yet
we have little trouble categorizing it as fabric. What
visual cues do we use to determine material identity?
Prior research suggests that simple “texture” features of
an image, such as the power spectrum, capture
information about material properties and identity. Few
studies, however, have tested richer and biologically
motivated models of texture. We compared baseline
material classification performance to performance with
synthetic textures generated from the Portilla-Simoncelli
model and several common image degradations. The
textures retain statistical information but are otherwise
random. We found that performance with textures and
most degradations was well below baseline, suggesting
insufficient information to support foveal material
perception. Interestingly, modern research suggests that
peripheral vision might use a statistical, texture-like
representation. In a second set of experiments, we
found that peripheral performance is more closely
predicted by texture and other image degradations.
These findings delineate the nature of peripheral
material classification.

Introduction

From a single image, humans can extract detailed
information about the properties of a material. Looking
at the photograph in Figure 1a, it is immediately
obvious that the pertinent material is water. The scene
also looks dynamic; droplets and waves suggest how the
water got to be there and where it might go next. It is
perhaps also apparent that the action is taking place
inside a steel sink.

The ability to perceive material qualities allows for
rich scene descriptions and for disambiguating between

objects of the same category (“the wooden plate”).
Furthermore, material perception allows us to safely
navigate the world, interact with objects, and infer
physical processes. Being able to reliably and quickly tell
whether a patch of road is wet or dry is vital for driving,
biking, and running, for instance. When grasping
soft-serve ice cream, we naturally reach for the solid
waffle cone, rather than the creamy filling. Mistaking
the material properties of the ice cream could lead to a
mess. A photo of squash easily reveals whether it is raw
or cooked, solid or pureed, fresh or rotten.

A central goal of research on the perception of
materials, or the “stuff” that makes up the world
(Adelson, 2001), is to discover what image cues and
computations allow humans to determine material
properties. Fleming (2014) argues that models of
material perception have fallen into two broad
categories. First are inverse optics models. In general,
these models assume that the visual system simulates
or inverts the physical processes by which light reflects
off materials and reaches the retina. Combining this
internal understanding of light propagation with
observations and prior assumptions would allow the
visual system to estimate the latent properties of
the material. Another class of models posits instead
that the visual system relies on statistical regularities
in the retinal image, or its “statistical appearance,”
to infer material qualities. For example, it has been
hypothesized that the skewness of an image’s luminance
histogram is a cue to the glossiness of the material
(Motoyoshi, Nishida, Sharan, & Adelson, 2007). It
is clear that this statistic is not the only cue used to
determine glossiness (Kim & Anderson, 2010), leaving
the door open for further exploration of diagnostic
image statistics. One key question is how much or how
little statistics are needed. Here, we study to what extent
an image-processing and statistics-based model of
visual texture can account for material perception.

Visual textures (simply “textures” for short) are
loosely defined as images or regions of images with
homogenous appearance. A pile of leaves, a striped
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Figure 1. Example material images from the MIT-Flickr Materials Database (Sharan et al., 2014). The images come from the water,
stone, and foliage categories, respectively. Notice the large range in viewpoint, illumination, scale, and context.

shirt, and random pixel noise all give rise to texture-like
images. It is important to note explicitly the distinction
between textures and materials; texture refers to a
regular, statistical pattern found in an image. Material,
on the other hand, is a richer concept, which may
depend on non-texture cues. To illustrate: whether a
tabletop is made of wood or plastic may not be obvious
from the texture seen in a photograph. Our ability
to categorize its material may depend on specular
highlights or overall shape. Textures have been studied
for understanding perceptual organization (Rosenholtz,
2014), shape perception (Forsyth, 1997), and most
relevantly for this study, material perception (Balas,
2017; Balas & Greene, 2023; Balas, 2015; Fleming, 2014;
Sharan, Liu, Rosenholtz, & Adelson, 2013; Sharan,
Rosenholtz, & Adelson, 2014). There is a long history
of modeling human texture processing, and models
fall into two general classes: object, or “texton” based
models, and image-processing basedmodels. The former
posits that the basic elements of texture are individual
features, such as angles, endstops, intersections, and
more, and that the more different two textures are
in their textons, the more perceptually different they
will be. The latter family of image-processing based
models has gained ground recently for applications
in computer graphics (Efros & Freeman, 2001; Gatys
Ecker, & Bethge, 2015; Portilla & Simoncelli, 2000) and
computer vision (see Rosenholtz, 2014 for a review)
and promises to be a more general approach because it
operates directly on the image itself, rather than using
hand-labeled features. It is pertinent to note that there
is extensive prior work on the usefulness of texture
models for material classification by humans and
computers (Gibson, 1986). The present study considers
a specific texture model, known as Portilla-Simoncelli
(Portilla & Simoncelli, 2000), which represents a texture
using a high-dimensional set of image statistics that
are thought to be relevant for early human vision

(Freeman, Ziemba, Heeger, Simoncelli, & Movshon,
2013; Freeman & Simoncelli, 2011; Ziemba, Freeman,
Movshon, & Simoncelli, 2016) and peripheral vision
(Balas, Nakano, & Rosenholtz, 2009; Ehinger &
Rosenholtz, 2016; Keshvari & Rosenholtz, 2016;
Rosenholtz, 2011; Rosenholtz, Huang, & Ehinger, 2012;
Rosenholtz, Huang, Raj, Balas, & Ilie, 2012). Thus
P-S statistics seem to be an interesting candidate to
represent an intermediate stage between very low-level
image statistics, like skewness, and a high-level account,
such as inverse optics, of material perception.

There are several studies on texture for material
perception. Sharan et al. (2014) found that the
information encoded by a nonparametric texture model
was not sufficient to capture material categorization
performance. Specifically, they generated textures from
material images using the patch-based synthesis method
in Efros & Freeman, 2001. Observers viewed these
textures for one second and classified them into one of
nine categories. First, the observers were significantly
less able to classify these textures than the original
material images, and performance with the originals was
near ceiling. Second, there were significant differences
in categorization performance among the nine different
material categories when viewing textures.

On the other hand, in a detailed study on machine
classification of materials, Sharan et al. (2013) found
that small and large-scale texture-like descriptors
were essential for good classification performance.
Specifically, they computed jet (Koenderink & van
Doorn, 1987) and SIFT (Lowe, 1999) features,
measures of color distribution, material shape (in the
form of the curvature of edge maps), in addition to
reflectance-based features, on material images and
filtered versions of them. They trained a classifier to
map the feature set from each image into a material
category. They found that SIFT was the single best
feature for classification, although other features were
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quite important when included. This suggests that
such features are diagnostic of material category. In a
relevant extension, they measured the ability of their
algorithm and humans to classify textures generated
from material images. That is, they scrambled material
images using texture synthesis (Efros & Freeman,
2001) (in a similar fashion to their other study [Sharan
et al., 2014]) and presented those to their algorithm
and human observers. They found that these texture
images were not only harder to classify for both the
algorithm and humans but nearly equally difficult for
both algorithm and human. This suggests potential
similarities in encoding.

Although humans are clearly able to extract a much
richer representation of a material than simply its
identity, we choose to focus on classification ability.
Classification presumably relies on many material
properties and is less dependent on biases or preferences
of observers than subjective judgments. Classification
is also arguably an important task for vision and
can inform the estimation of other properties. For
example, knowing that an object is made of glass
reveals something about its material qualities like gloss,
roughness, and color (Fleming,Wiebel, &Gegenfurtner,
2013). On the other hand, it is also true that knowing
an object’s material properties is informative about its
identity. The importance of classification is reflected by
a growing body of work on material classification by
humans, which we summarize here.

Sharan (2009) and Sharan et al. (2014) found that
humans can classify images of materials reliably and
quickly, despite large variations in color, scale, and
context. Critically, they found that this ability does
not depend on a single cue, such as color, shape,
or small-scale texture; it is rather a more basic and
holistic ability. Using the same MIT-Flickr material
image database Sharan et al. (2014) and Fleming
et al. (2013) found that k-means clustering on averaged
subjective ratings of intermediate material properties
(like glossiness or transparency) of the images could
correctly classify materials with 90% accuracy. This
suggests that subjective observations and objective
categories are closely connected and that what we learn
from categorization experiments will generalize to
material perception in general.

Our study’s purpose is threefold. First, we test
whether a state-of-the-art model of texture, P-S texture
statistics, can fully capture what aspects of an image are
cues to its material category. This can be understood as
an important extension of the texture work done by
Sharan et al. (2013) and a rigorous assessment of the
extent to which texture supports material perception. It
is important to note that although Sharan et al. (2013)
did test an image quilting-based texture model (Efros &
Freeman, 2001), that model had several shortcomings.
First, the output varied greatly with a hand-tuned patch
size parameter, which strongly affected categorization
ability. Second, because the quilting model synthesizes

textures either by tiling random patches or by choosing
neighboring patches to be similar, larger structures that
span multiple patches are unlikely to be reproduced,
leading to a very fragmented image with “hallucinated”
edges not present in the original material. The P-S
texture model, which is not patch based and measures
multi-scale and multi-orientation features, is likely
to generate different and possibly more accurate
predictions.

Second, we test the ability of observers to classify
material images shown peripherally. Since P-S texture
statistics are the backbone of a couple of powerful
models of peripheral vision (Balas et al., 2009; Freeman
& Simoncelli, 2011), it is interesting to compare texture
performance to peripheral performance in material
perception. Notably, Balas, Conlin, and Shipman (2016)
compared material categorization performance between
a color version of P-S and peripheral vision. One can
consider our study as an answer to the limitations and
potential extensions they raise about their own study.
Our study differs in methods, analysis, and findings.
A full comparison of our studies is complex and not
the main goal of this article; therefore we discuss the
differences extensively in the Appendix. Moreover,
we believe that understanding peripheral material
recognition contributes to a general understanding of
material perception. An important reason to recognize
materials is to facilitate interaction. When we touch
or grab something, we have an estimate of the target’s
properties (Hayhoe, 2017). Manual interaction is not
always immediately preceded by foveal scrutiny (L. E.
Brown, Halpert, Goodale, Halpert, & Goodale, 2005;
Mennie, Hayhoe, & Sullivan, 2007) and likely often
based on peripheral information. This provides extra
motivation to understand what information is available
to the visual system at these moments preceding
interactions.

Finally, we compare human performance to several
other common image degradations. Namely, we
subject the material images to blur, high-pass filtering,
phase-scrambling, and analysis/synthesis with the
Texture Tiling Model (Balas et al., 2009). The texture
tiling model (TTM) is a biologically plausible model of
peripheral vision that posits “pooling regions,” which
tile the visual field, partially overlap in spatial extent,
grow with visual eccentricity, and encode P-S statistics.
These image manipulations augment our goal of
determining how texture captures material appearance.

Baseline and texture methods

Material images

We used images from the MIT-Flickr Materials
Database (Sharan et al., 2014). The MIT-Flickr
database has several advantages for our purposes over
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Figure 2. Example stimuli used in the baseline experiment. The label at the bottom indicates the category from which the materials
above it were drawn.

other material image databases. Prior work has shown
that people are quite good at categorizing the images
in the database (Sharan et al., 2014), despite the large
variability in color, pose, scale, semantic content, and
illumination within and between material categories.
Furthermore, since the images are highly variable,
whatever image cues the observers use to do the task
are more likely to generalize to real world perception.
Prior material image datasets are usually too restricted
in viewpoint, illumination, color, content, and more, to
be useful for probing general material perception ability.
The materials in CUReT (Dana, van Ginneken, Nayar,
& Koenderink, 1999), for example, are laid out flat,
illuminated identically, and photographed from a single
viewpoint and distance. Using such a restricted set
might erroneously lead to the conclusion that texture
is sufficient for material classification. For example, a
texture model might not be able to capture the essential
qualities of glass if different lighting angles are used for
different exemplars.

The MIT-Flickr database contains a total of 900
images, with nine material categories and 100 images
in each category. We only used six of the categories
(stone, water, wood, fabric, foliage, and leather; leaving
out metal, plastic, and glass) to facilitate an easier six-
rather than nine-alternative forced choice task. For each
category, the database contains 50 “close-up” and 50
“object-level” images. The object-level images usually
contain more background (of a different material than
the relevant one), which is problematic for texture
synthesis techniques that assume a single texture.
Therefore we left those out of this study, resulting in
300 total material images. When generating synthetic
textures, we chose to convert all images to grayscale
and windowed them, for reasons described in Texture
Synthesis. This resulted in material images of 192 × 192

pixels; this same size was used in all experiments. We
similarly gray-scaled and windowed material images
for the baseline experiment. This helped ensure that
differences in performance between baseline and texture
conditions are driven by the texture representation.
See Figure 2 for some example stimuli.

Texture synthesis

Textures are generated using the basic P-S synthesis
algorithm (Portilla & Simoncelli, 2000). We first
converted the images to grayscale by converting to
CIELab space and keeping only the luminance channel.
This was done for three reasons: first, observers
are nearly as good at foveal material classification
in grayscale as with color (Sharan et al., 2014), so
it is not essential for material perception. Second,
there is not a color version of the texture model
that is widely accepted and tested with respect to
human vision (although a color version exists at
http://www.cns.nyu.edu/∼lcv/texture/). The grayscale
P-S model has been tested extensively with a variety of
stimuli and tasks (Balas et al., 2009; Rosenholtz, 2017).
Third, we wish to avoid a scenario in which observers
rely only on color and thus the results do not reflect the
influence of texture. Then, for each material image, we
compute P-S statistics (with default parameters) and
use the P-S synthesis algorithm along with a random
noise seed to generate a synthetic version of the same
size. We run the algorithm for many iterations (150)
to ensure convergence. This procedure results in 300
synthetic textures, one for each original material image.

The algorithm assumes that the image wraps around
top-to-bottom and side-to-side (i.e., it assumes the
original and synthesized images lie on a torus). This
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Figure 3. Example materials along with their synthetic texture versions. Each image in the first row column is the original, and the
corresponding image in the second row is a sample texture.

means that the edges of the image are nonintuitively
structured, and it is cleaner to leave them out by
windowing (mentioned in the previous subsection).
Note that the windowing is done after synthesis
(textures are computed over the whole, un-windowed
material image; the synthesis produces a full-sized
image that is then windowed). We used a circular
window of 2° visual angle in radius, with a smooth
Gaussian fall off of standard deviation of 0.5 deg
(see Figure 2). Figure 3 illustrates some materials and
their texture counterparts.

Observers

Sixteen observers participated in the experiments.
Five observers did the baseline experiment, and 11
did the texture task (these latter observers also did
the peripheral task in a separate block as discussed in
the Peripheral section). All observers were naïve as to
the purpose of the experiment, and all had normal or
corrected-to-normal vision. Observers in the baseline
experiment were paid $10 for about 30 minutes of
experiment; the rest were paid $15 for about an hour of
experiment.

Apparatus

Stimuli were presented using Psychtoolbox 3 (Kleiner
et al., 2007) and MATLAB on a CRT monitor with a
mid-gray background. Observers used a chinrest in all
conditions. Observers responded by using a mouse to
click on one of six circles, each labeled with one of the
categories.

Procedure

For all experiments, observers had unlimited viewing
and response time. Observers were first oriented to the
task by the experimenter and shown example stimuli

along with category labels. The experimenter also
informed them that all categories occurred with equal
frequency, and to do the best possible without spending
too much time on a particular trial. Observers received
feedback on the first 25 trials. Each observer saw all 300
unique stimuli, in random order.

For each trial, the procedure is as follows: the
stimulus (material image) appears in the center of the
screen after a one- second central fixation (fixation
circle remains on throughout each trial). The observer
then has unlimited time to push the spacebar to end the
presentation. Upon pressing the spacebar, the stimulus
is removed, and the decision screen appears. On the
decision screen, the name of each material category
is shown in a circle of radius 2°, at 8° eccentricity
(evenly spaced in a notional circle centered at the screen
center). The observer then moves the mouse to the
desired choice and clicks to make a response, and the
decision screen is removed. The first 25 trials have visual
feedback as to correctness of the response (a change
in the color of the central fixation for 0.5 seconds).
During the rest of each experiment, observers receive
no feedback, with the fixation remaining white for
0.5 seconds after the response. The next trial begins
after the feedback/white fixation. The observer receives
an untimed break every 75 trials. A schematic of the
procedure is illustrated in Figure 4.

Baseline

For the baseline task, observers viewed all 300
windowed material images presented foveally and did
the classification task as described in the Procedure
section. It is important to get a baseline measure of
performance for several reasons. If we are to examine
texture as a cue for material category, we need to
know how well observers can tell category with all
cues present (i.e., the original materials). To our
knowledge, there has not been a study of untimed,
grayscale material recognition with the MIT-Flickr
database using the subset of images we choose here.
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1 second
until spacebar

until click

Figure 4. Procedure for a single trial in the baseline experiment. If the trial contains feedback, it is displayed immediately after
clicking. The procedure for the texture experiment is identical, except displaying a texture image instead of a material.

Importantly, it is not obvious that observers will be
perfect at this task. The images come from a wide
range of three-dimensional shapes, object identities,
surface reflectances, physical scales, and illuminations,
even within a category. Our later experiments compare
performance in this baseline condition to performance
under degraded viewing conditions. If observers are
less able to categorize materials with the textures than
the baseline, this would imply that texture is not a
sufficient cue for category. In other words, this finding
would imply that the information lost by converting
a baseline material to a P-S texture (e.g., shape or
large-scale layout information) is necessary for robust
material classification. If, on the other hand, texture
classification performance is indistinguishable from
baseline performance, we cannot draw definitive
conclusions about the necessity of texture for material
classification.

Texture

For the texture task, observers foveally viewed
windowed synthetic textures generated using the
procedure described in the Texture Synthesis section.
Specifically, the observers did the same classification
task as described in the Procedure section, except
viewing textures. The experimenter gave a colloquial
explanation of how the textures are generated from
the original materials, including that parts of the
image might be translated, swapped, and mixed with
respect to the original material image. Importantly,
they were instructed to respond to what material
category the texture was generated from, rather than
what material the texture itself might look like. This
distinction encourages the observer to do as well as
possible with the available information and consider

their intuitions about the texture-generation process.
Also, this discourages the observers from interpreting
artifacts caused by the synthesis process as informative
cues. The goal is to use human observers to measure
what classification is possible, given only the texture
statistics (Balas et al., 2009). For this purpose, we want
them to make full use of the available information,
which includes bringing to bear understanding of the
effects of texture synthesis on images of materials.

Baseline and texture results

We analyzed the results in several ways. First, we
discuss the results from each experiment separately,
and then compare them. Unless otherwise noted,
statistical significance values are computed using a
Bonferroni-corrected two-sided random-permutation
test. Such nonparametric permutation tests are more
appropriate than traditional hypothesis tests, for
example t- or F-tests, because categorization tasks
violate the necessary normality assumptions (Still &
White, 1981).

Baseline

Five observers completed the baseline experiment,
each doing 300 trials. The average performance
(proportion correct) over all six categories and all
subjects was 0.882 (chance is 1/6 ≈ 0.167). Each
observer performed well above chance in each category
(p < 2 × 10−5). This is in line with previous work, where
Sharan et al. (2014) found that observers’ performance
was 0.866 (chance is 1/9 ≈ 0.11) for nine-way grayscale
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Figure 5. Confusion matrices for the baseline (A) and texture (B) experiments. The row indicates the true material, and the column
indicates the response. Darker shades indicate a higher prevalence of the response. The color bar on the right provides a reference for
exact values. Notice that most of the mass is along the diagonal in the baseline case, indicating high performance. In the texture case,
the diagonal is weaker, and errors are widely distributed.

material classification. A confusion matrix of responses
is shown in Figure 5A.

Texture

Eleven observers completed the texture experiment,
each doing 300 trials. The same subjects did the
peripheral experiment in a different block. Average
performance over subjects and categories was 0.40.
Each subject performed above chance (p < 2 × 10−5)
averaging over all categories. Each subject was also
above chance within each category (using a p < 0.05
criterion), with a few exceptions: two subjects were not
above chance at classifying fabric, three observers were
not above chance with foliage, and one observer was
not above chance with leather. The confusion matrix is
shown in Figure 5B.

Comparison

We directly compare the elements in the confusion
matrix from one experiment to the other (see Figure 6).
Note that since these “data points” do not obey the
assumptions made by regression (independent errors,
homoscedasticity, and weak exogeneity), the R2 value
is not strictly appropriate. Nevertheless, the strong
correlation intuitively would indicate not only that the
“correct” responses are similar between conditions, but
so are the confusions (off-diagonal elements).

Fitting a simple linear regression model to all the
elements, we find significant correlation (adjusted
R2 = 0.72). The fitted slope (slope = 0.34), however, is
not close to the identity line (slope = 1, intercept = 0),
as we would expect if the experimental conditions were
comparable. For this reason, we argue that baseline

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

Figure 6. Comparison of elements in the texture confusion
matrix (Figure 5A) to elements in the baseline confusion matrix
(Figure 5B). The cluster of points on the right are the diagonal
elements, the proportions of correct responses. Notice that
although baseline is not well predicted by texture, texture
performance is above chance (1/6).

performance is not well predicted by performance using
the texture images.

Interim discussion

We can draw several conclusions from the baseline
and texture experiments. First, humans are excellent at
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categorizing grayscale images of materials. Performance
is near ceiling for each subject in each category. Second,
performance in the texture task is much lower than
ceiling. Although all subjects are performing above
chance, for certain categories, there are subjects that do
not perform above chance. This implies that texture is a
cue to material category, although it is not sufficient to
explain baseline categorization ability.

Comparing baseline to texture performance, we
see that texture statistics are not sufficient to convey
material category. It is difficult to assess whether the
pattern of classification errors is the same in the two
conditions because there are few classification errors
in the baseline condition. In spite of the fact that
texture clearly provides one cue to material perception
(Rosenholtz, 2014) and that the texture model we
used is a top-performing model of texture perception,
performance with texture-only material images was well
below that of the baseline condition. This suggests that
other cues must play a large role in classification.

Peripheral vision

Humans can identify materials peripherally, for
example, when noticing wet leaves on a road while
driving and looking ahead. This plays into rapid
scene categorization where observers quickly classify a
natural scene. Research on rapid scene categorization
argues that this ability depends on low-level image cues
(Oliva & Torralba, 2001) rather than by identification
of objects in the scene. This finding is relevant to the
present study for two reasons: First, because of the
rapid presentation, most of a scene can only be seen
peripherally. Second, in natural scenes, most of the
image consists of regions of various materials rather
than individual objects. A waterfall scene, for example,
might have water running along the middle with foliage
and stone on the sides; there may not even be easily
individuated plants or rocks.

Furthermore, there is an established body of
work modeling peripheral vision as forced texture
perception. This line of research suggests that a
statistical representation that pools information over
large regions of the visual field, namely visual texture,
captures the information available to peripheral vision.
Visual texture has made successful predictions for
many peripheral vision phenomena (Rosenholtz,
2011), such as crowding (Balas et al., 2009; Keshvari &
Rosenholtz, 2016), visual search (Chang & Rosenholtz,
2016; Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz
et al., 2012; Zhang, Huang, Yigit-Elliott, & Rosenholtz,
2015) and scene perception (Ehinger & Rosenholtz,
2016). As mentioned previously, one study has
even made an examination of peripheral material
perception with a subset of material categories

(Balas et al., 2016). For these reasons, we explicitly
test peripheral material classification, and compare
it to results from both baseline and texture material
classification.

Peripheral methods

In the peripheral task, observers viewed windowed
grayscale material images (not textures) at 10 deg
center-to-center eccentricity. The images were randomly
shown to the left or right of fixation. We used the
Eyelink 2000 (SRI Labs) for eyetracking, along with
the standard built-in calibration procedure. The image
was only on while the observer was within 2° of the
central fixation; if the gaze fell outside of the central
2°, the image was removed until the gaze returned.
Eyetracking was not used during the decision stage.
Thus the peripheral condition was identical to the
baseline condition except that the material images could
only be viewed peripherally.

Peripheral results

Eleven observers completed the peripheral
experiment, each doing 300 trials, in the same session
but different block as the texture experiment. Block
order was counterbalanced among subjects. Average
performance over subjects and trials was 0.44. As in the
texture experiment, all subjects performed well above
chance when averaging over all categories (p < 2 ×
10−5). For each subject and category, performance
was above chance (p < 0.05) except for one subject for
fabric, one for foliage, and one for leather. As before,
the confusion matrix of responses is shown in Figure 7.

Figure 7. Confusion matrix for peripheral viewing experiment.
Similar to the confusion matrix for texture, most of the
responses fall along the diagonal (indicating correct
classifications), and there is a large spread in the errors (off
diagonal elements).
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Figure 8. Comparison of elements in the texture confusion
matrix (Figure 5B) to elements in the peripheral confusion
matrix (Figure 7). Notice that not only correct classifications
(the values above about 0.3 in both dimensions) fall close to
the diagonal; off diagonal elements (confusions) do as well.

Comparisons
Confusion matrix comparison: Comparing the
confusion matrices between the baseline and peripheral,
we find that baseline performance is also not well
predicted by peripheral; this is unsurprising given
the large discrepancy between overall performance.
Comparing the elements in the matrices between texture
and peripheral experiments, however, we find strong
correlation (R2 = 0.72, slope = 0.84; Figure 8).

Online experiments

These findings suggest an important role for texture
in perception of materials in the periphery. To get a
more complete picture of the roles played by other
possible image properties, we conducted five online
experiments testing alternative cues for material
perception.

Online methods

All experiments used grayscale material images,
altered in the ways described below, and windowed with
the same parameters as the in-lab foveal experiment.
The five image manipulations are as follows:

Blur: Material images are convolved with a
gaussian kernel of standard deviation of 8 pixels
(approximately 4.17% of the image size).

High-pass: Each image is blurred with a gaussian kernel
of standard deviation of four pixels (approximately
2.08% of the image size), then subtracted from its
original.

Phase-scrambled: Images are transformed with Matlab’s
fft2, and the phase image is shuffled randomly before
recombining with the unchanged magnitude image
using ifft2.

Texture: The images are identical to the synthetic
texture images used in the lab experiment.

TTM: Each image is analyzed and synthesized using the
Texture TilingModel (Balas et al., 2009) using default
synthesis parameters and the same eccentricity as in
Peripheral methods.

For each image manipulation, 40 unique
observers were recruited from Amazon Mechanical
Turk. Observers gave informed consent and were
compensated for finishing the experiment. There was
no time limit enforced. Each observer classified all 300
images, as in the lab experiment, split equally among
the six ground truth categories and ordered randomly.
Observers were oriented to the experiment with
examples of the original and manipulated images. They
had unlimited time with each stimulus. To ensure that
participants were engaged with the task, we randomly
interspersed six catch trials; instead of classifying an
image for these trials, observers responded to a question
about each of the categories (i.e., “Which category
includes leaves and plant material?”). Any observer who
responded incorrectly for more than one of the catch
trials was excluded from analysis. After removing these
observers, we were left with the following: 25 observers
for blur, 31 observers for high-pass, 25 observers for
phase-scrambled, 24 observers for texture, and 26
observers for TTM.

Online results

Average performance
Average performance in the tasks was different

for each experiment, ranging from 0.35 with TTM
images to 0.62 with high-pass images. See Table 1 for
performance in each online experiment.

Experiment type Blur Texture
Phase-

scrambled
High-
pass TTM

Mean performance 0.43 0.36 0.45 0.62 0.35
Standard error 0.018 0.023 0.023 0.030 0.012

Table 1. Performance in online experiments. See text for
numbers of subjects in each experiment.
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Comparisons
When comparing results between observers in

different experimental conditions, we use the modified
Cohen’s Kappa developed by (Geirhos, Meding, &
Wichmann, 2020). Briefly, the measure κ is defined as
the number of times two classifiers make consistent
decisions (incorrect or correct) with the same stimulus,
normalized by the number of expected randomly
consistent decisions simply due to overall performance.
This allows us to measure similarity between classifiers
in a more granular way. It is limited, however, because
it does not consider exactly which confusions are made;
only that the response is correct or incorrect.

For each stimulus condition, we measure within-
condition κ̄ by averaging individual κ values computed
between all possible pairs of observers. Similarly, we
measure between-condition κ̄ by averaging all possible
κ that can be computed between observers in the
two different conditions. This requires comparing
performance on the same material image between
observers and experiment types. Error bars correspond
to SEM computed over all possible comparisons.

Comparisons between observers in these image-
degradation experiments and observers in the lab
experiments reveal several similarities and differences.
For example, we find that classification in online
experiments with blur, texture, and TTM-degraded
images is significantly more like classification in the
periphery than in the fovea. Furthermore, performance
with high-pass materials is significantly more like foveal
material perception than peripheral. Phase-scrambling
and texture in-lab trend toward a matching peripheral
classification more closely than foveal but are not
significant after correcting for multiple comparisons.
It is important to reiterate, however, that this analysis
only considers how often raters were both correct or
incorrect on matched trials, normalized by agreement
because of chance; it does not consider the actual
responses made.

Discussion

Materials are ubiquitous in natural visual experience,
and humans are remarkably good at identifying
materials. This ability is robust to large changes in
viewpoint, illumination, scale, color, and subclass
(Sharan et al., 2014). We found that texture statistics
support this ability to some extent but are not sufficient
to explain foveal material classification. While some
examples of materials are well-captured by this
representation (for example, see the two top right
images of wood and their textures in Figure 3), most
material examples contain information that is not
retained by texture statistics. This failure of texture
statistics to explain foveal perception is in line with
a previous study, which found that a nonparametric

model of texture (Sharan et al., 2013; Sharan et al.,
2014) was a poor descriptor of material category to
foveally-observing humans and algorithms.

Some materials are better represented as a texture
than others. We suspect that this derives from
inherently unique statistical properties of the materials.
For example, water has sharp caustics, waves, and
distortions that are not found as often in the other
categories. Furthermore, some materials may have
a more diverse appearance. Foliage sometimes
consisted of small, texture-like repetitive structures
like overlapping leaves or bark, while other times it
was a prominent single object or shape, such as a
single leaf or flower. In the latter cases, a texture model
seemed to perform poorly; it tosses out large-scale
shape information, which would otherwise help with
categorization. It is interesting to view these results
in light of the findings of Sharan et al. (2013) with
respect to non-texture features. They find that features
measuring variation across and along only edges,
including both curvature and so called “edge-slice”
and “edge-ribbon” features, are important for machine
material classification. These features, which are
designed to glean shape and reflectance information,
might be a piece of the information missing in P-S.
Interestingly, they found these non-texture features be
vital for their computer vision system. Along these
lines, a more recent instantiation of TTM measures
and preserves end-stopping statistics (Brown et al.,
2022) defined as squared difference between adjacent,
orthogonal edges seems to improve its power in
simulating peripheral vision.

One main finding in this study is the similarity
in performance between degraded images and
peripheral viewing. Namely, we find that the blur,
texture (online), and TTM images are classified more
like peripheral images, even accounting for similar
performance, than other image degradations like
high-pass filtering or phase scrambling (Figure 9).
This suggests that peripheral viewing of materials
decreases performance in a specific way, rather than
causing a general increase in difficulty; the correlation
between peripheral and texture responses is not due
to only stimulus-inherent difficulty. While blurring
does match peripheral viewing closer than foveal
viewing, note that to get sufficient loss in performance,
the level of blur used in this experiment had to be
approximately 19 times larger than what would be
required to mimic peripheral acuity loss at 10 degrees
eccentricity. Specifically, an acuity-matched gaussian
blur kernel would have σ ≈ 0.42 pixels at 10 degrees
eccentricity (Rodieck, 1998), whereas the blur we use
has σ = 8 pixels. For this reason and blur’s inability to
model other peripheral phenomena, we do not consider
this as evidence for blur as a complete model of
peripheral material perception. The P&S texture model
and TTM are viable models for peripheral vision and
have been shown to predict the peripheral phenomena
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Figure 9. Average inter-rater similarity scores using modified
Cohen’s kappa (Geirhos et al., 2020). Dark bars in each pair are
computed between the listed stimulus condition and foveal
observers, whereas the lighter bars are computed between the
stimulus condition and peripheral observers. The horizontal line
above each pair of bars represents the average self-similarity
between observers in the stimulus condition; this can be
considered as an upper bound on inter-rater similarity.
Asterisks represent significant differences at p < 0.05 in a
one-way ANOVA with Dunn-Sidak correction for multiple
comparisons. Error bars and shaded regions represent standard
error of the mean.

in many other studies (see Rosenholtz, Yu, & Keshvari,
2019 for a review). It is possible that some weighted
linear or nonlinear combination of the models we tested
would best predict peripheral material perception; this
is a potential avenue for future research. Interestingly,
we find a discrepancy in texture’s ability to match
periphery between in-lab and online studies. We believe
this is due to the larger number of observers in the

online study, although this merits further study. Finally,
as part of the synthesis process, TTM blurs the stimulus
a small amount to simulate acuity losses in peripheral
vision. This amount of blur may serve to bring its
predictions more in line with the periphery. Note that
Balas et al. (2016) do not find a close correspondence
between textures and peripheral vision of materials; we
compare their study to the current one extensively in
the Appendix.

It is worth mentioning what might change if color
were to be included in this study. It is likely true that our
choice of material categories would allow observers to
perform above chance with color alone; the six classes
we used all have different prior color distributions.
Furthermore, the loss of information available in the
periphery might actually make color more important
in the periphery, because spatial cues become more
ambiguous. In fact, given the loss of spatial order, it
is possible that randomly using some colors from the
target or showing a separate representation of the color
distribution peripherally would be as good as using the
“correct” color texture model. Although certainly a
worthy topic of study, making a definitive statement
about the role of color would require specifying a model
and conducting one or more further experiments, which
falls outside the scope of the current study.

By showing each material image both peripherally
and as a texture to each subject, we are able to
visualize per stimulus where the statistical model and
peripheral vision differ. We can glean some intuitions by
considering stimulus-texture pairs in cases where more
subjects were correct with textures than peripherally,
and vice versa. In the case where texture performance is
better than peripheral performance (Figure 10), there
seem to be shape cues which are not diagnostic (or even

Figure 10. Example materials stimuli with corresponding textures. (A) Materials for which more observers are correct with textures
than in the periphery (upper-left region of Figure 8). (B) Materials for which more observers are correct in the periphery than with
textures (bottom-right region of Figure 8). The differences between these materials is useful for spotting the shortcomings of texture
as a model of peripheral vision.
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misleading) of material category. The statue of a child
in the bottom right image is made of wood; but statues
can be made of several different materials, including
stone. By tossing out large-scale shape information,
the texture model may actually represent the material
identity better. Similarly, for the football in the middle
right, the overall curved shape does not necessarily
hint at leather; only by “stripping off” the surface
material with texture is the leathery look obvious. We
can also consider cases where peripheral vision is better.
Looking at Figure 10B, the fabric example in the middle
right has long-range structure. Namely, the vertical
folds give away the fabric nature of the material; these
long-range structures are washed out in the statistical
representation. These findings suggest that the texture
model lacks some of the long-range correlations that
peripheral vision picks up on.

One conclusion that we can draw from this study is
that a full model of peripheral vision must represent
these shape cues with a higher fidelity. This may be
done through explicitly adding shape information to
the model, as implemented by (Sharan et al., 2013) for
machine classification or for visual search (Alexander,
Schmidt, & Zelinsky, 2014). It might also be achieved
by using multiple, overlapping regions where texture
statistics are computed. Extensive and promising work
has been done in this domain using such a model,
known as the Texture Tiling Model (Rosenholtz,
Huang, & Ehinger, 2012). Future research should
address whether the long-range correlations afforded by
models like the TTM are sufficient to explain peripheral
texture perception.

Keywords: peripheral vision, material perception,
texture, modeling
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Appendix

We use the appendix to compare in detail our study
to Balas et al. (2016). Given that they also conducted
experiments on material classification, comparing the
periphery to P-S textures, we find it appropriate to go
into some detail. Both their and our studies examine
the similarity between material and texture perception.
They use different methods, however, leading to
different findings and conclusions. Importantly, their
discussion suggests several shortcomings of their
approach, which we believe our study addresses.
By addressing these issues, we help complete our
understanding of the relationship between texture and
material perception.

Differences in methods

Eye movements and stimulus duration
To limit subjects’ use of eye movements, Balas et al.

(2016) displayed stimuli only for short times (250 ms),
whereas we used eye-tracking to make a gaze-contingent
display while allowing unlimited viewing times. This
difference in presentation times may lead to differences
in performance between our studies; however, to our
knowledge, there has not been a systematic study of
how stimulus duration affects peripheral perception
of materials or other naturalistic stimuli. Many
studies vary peripheral stimulus presentation time
with artificial or naturalistic stimuli. Some findings
preclude significant improvement above 250 ms (Lev
& Polat, 2015; Morikawa, 2000; Saarinen, 1988;
Thorpe, Gegenfurtner, Fabre-Thorpe, & Bülthoff, 2001;
Trouilloud et al., 2020) whereas others do not (Kooi,
Toet, Tripathy, & Levi, 1994; Tripathy, Cavanagh, &
Bedell, 2014; Tripathy & Cavanagh, 2002). This is a
promising avenue for future research on the dynamics
of peripheral vision.
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Stimulus selection
Balas et al. (2016) used 25 unique images per

category, and 4 categories, for a total of 100 images per
condition; we use 50 unique images per category, and
6 categories, for a total of 300 images per condition.
They did not filter out the “object” level stimuli, and
do not indicate how they selected specific images from
the larger FMD database. The “object” level stimuli are
likely to have more global structure, and as suggested by
our findings, might be partially responsible for differing
results. We observe large variance in performance
between individual stimuli, even when leaving out the
“object” level stimuli.

Stimulus size
The stimulin of Balas et al. (2016) subtended 4° visual

angle and were not cropped, whereas ours subtended 2°
and were cropped circularly with soft edges. We believe
that the sharp edges of their stimuli might increase
difficulty when viewing peripherally, potentially by
causing visual crowding between the sharp edge and
material image.

Stimulus color
The original materials of Balas et al. (2016) are

shown in full color, and they use the color version
of P-S to generate textures; we use grayscale original
materials and grayscale P-S. We discuss this difference
in detail in the Discussion.

Data analysis
Balas et al. (2016) drew conclusions based on

comparing correct classifications separately from
confusions, between experiments. Our approach
does not include statistical tests on the differences in
performance between individual categories. Rather, we
report the aggregate correlation over all categories and
all confusions. We believe that aggregating all of the
materials and confusions within an experiment allows
for a more comprehensive result.

Model parameters
The size of the autocorrelation matrix is a free

parameter in the P-S model. Autocorrelation is
measured on an original image, and enforced during
synthesis. Balas et al. (2016) used a 21- × 21-pixel
autocorrelation matrix; we used 9 × 9, which is the
default for the model. We could not determine their
motivation behind this parameter value choice.

Differences in findings

To compare the results between our tasks and those
of Balas et al. (2016), we computed the d′ (using
the dprime.mAFC function in Ken Knoblauch’s
R package from the confusion matrices, https:
//cran.r-project.org/web/packages/psyphy/index.html)
sensitivity index for each category. This allows us
to account for the difference in the number of
alternative choices between the tasks (Balas et al.
[2016] used four materials while we used six). We
compare their “far-periphery” and “synthetic” results
to our “peripheral” and “texture” results, respectively,
because they are the most similar. Within those tasks,
we compare performance among the three materials
present in both studies: water, wood, and stone.

Looking at the comparisons in Figure 11, we can see
that sensitivity in our task is lower for each common
category in peripheral classification, while it is higher
for the “synthetic” or “texture” task. As we discussed
earlier, there are several competing differences between
the experiments, which might push sensitivity one way
or the other. For example, we think the fact that their
stimuli are twice the size of ours at the same eccentricity
(their far-periphery condition), e.g. 4 instead of 2
degrees square, as well as to a lesser extent the inclusion
of color, drives their higher sensitivity peripherally.
Performance is higher for our “texture” task (than their
“synthetic”), despite lacking color and being smaller; we
believe that the short display times of Balas et al. (2016)
make the already-challenging texture classification task
especially difficult for their subjects. To our knowledge,
all previous studies using P-S as a model of vision used
long display times.

Differences in conclusions

Balas et al. (2016) draw several conclusions. First,
based on their result that four material categories
had roughly the same peripheral performance (except
wood), they argue that “The lossy transformation
imposed by viewing natural images in the periphery
therefore does not appear to differentially impact the
recognizability of different materials.” We tested a
wider range of materials and more unique examples of
each material and found there to be large differences in
sensitivity between categories. Second, in attempting
to explain the difference between the results of the
peripheral and synthetic experiments, namely “P-S
algorithm does not appear to provide an adequate
feature vocabulary for explaining correct material
categorizations,” they suggest several explanations.
These include (A) “Increased viewing time for the
synthetic images, decreased viewing time for the
original images, or increased eccentricity of stimulus
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Figure 11. Comparison of material classification sensitivity in Balas et al. (2016) to the current study. The main differences between
the experiments are as follows: Balas et al. (2106)’s stimuli subtended 4 degrees visual angle, were colored, uncropped, and displayed
only for 250 ms, whereas ours were 2 degrees wide, grayscale, cropped with soft circular edges, and shown for unlimited viewing
time. Furthermore, they used an unspecified subset of 25 material images per category from the full FMD database, whereas we used
all 50 “non-object” images per category. (A) Sensitivity for water, wood, and stone images viewed in their “far periphery” experiment
compared to our “peripheral” experiment (both experiments used 8 degrees eccentricity). (B) Sensitivity for the same categories but
comparing their “synthetic” to our “texture” experiment, where stimuli were synthesis using the P-S algorithm and shown foveally.

position for original images could all bring the baseline
performance across all categories closer together
between these two conditions”; (B) “while the algorithm
may not easily reflect how difficult our participants
found wood to categorize accurately in the periphery,
it may capture the variability across other material
categories”; and finally (C) “Presenting observers with
grayscale versions of the images used here could lead to

a different outcome, again suggesting both an important
limitation of the model and an important property
of human material perception.” Our study explicitly
addresses these issues they raise (note the differences
between methods discussed in the Appendix), and
indeed finds different results. In a sense, our study is an
answer to their “number of intriguing roads to further
inquiry.”
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