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for binocular disparity and a prior for lighting from above
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Using a novel approach to classification images (CIs), we
investigated the visual expertise of surveyors for
luminance and binocular disparity cues simultaneously
after screening for stereoacuity. Stereoscopic aerial
images of hedges and ditches were classified in 10,000
trials by six trained remote sensing surveyors and six
novices. Images were heavily masked with luminance
and disparity noise simultaneously. Hedge and ditch
images had reversed disparity on around half the trials
meaning hedges became ditch-like and vice versa. The
hedge and ditch images were also flipped vertically on
around half the trials, changing the direction of the light
source and completing a 2 × 2 × 2 stimulus design. CIs
were generated by accumulating the noise textures
associated with “hedge” and “ditch” classifications,
respectively, and subtracting one from the other. Typical
CIs had a central peak with one or two negative
side-lobes. We found clear differences in the amplitudes

and shapes of perceptual templates across groups and
noise-type, with experts prioritizing binocular disparity
and using this more effectively. Contrariwise, novices
used luminance cues more than experts meaning that
task motivation alone could not explain group
differences. Asymmetries in the luminance CIs revealed
individual differences for lighting interpretation, with
experts less prone to assume lighting from above,
consistent with their training on aerial images of UK
scenes lit by a southerly sun. Our results show that (i)
dual noise in images can be used to produce
simultaneous CI pairs, (ii) expertise for disparity cues
does not depend on stereoacuity, (iii) CIs reveal the
visual strategies developed by experts, (iv) top-down
perceptual biases can be overcome with long-term
learning effects, and (v) CIs have practical potential for
directing visual training.
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Introduction

General background

The creation of authoritative geographic mapping
data requires careful measurement and categorization
of features in the landscape. At the Ordnance Survey
(OS; UK), landscape features are typically measured
and categorized by experienced remote sensing
surveyors based on high resolution stereoscopic
photographs of aerial-view landscape imagery
(photogrammetry). These photographs are taken from
an aircraft, and stereogram pairs are created by using
two images covering overlapping landscape areas
spaced out along the flight path. The remote sensing
surveyors use this stereoscopic imagery to create and
update map data, including measures such as ground
height, and geographic features such as fences, paths,
vegetation, houses, embankments, roads, and rivers.
This perceptual task is often difficult to perform
accurately and requires training and experience. While
it is relatively easy to teach the semantic properties of
geographic features, it is more challenging to formally
teach the perceptual cues required for detection and
discrimination. Visual expertise is accumulated over
time in the workplace, allowing experienced surveyors
to better detect and classify features in images. However,
even experienced surveyors find it hard to articulate the
nature of their expertise, and there is little knowledge
about such expertise in the literature.

Previous studies of visual expertise include work on
medical imagery (e.g., Fox & Faulkner-Jones, 2017;
Gegenfurtner, Lehtinen, & Säljö, 2011; Krupinski,
2010; Krupinski et al., 2006; Reingold & Sheridan,
2012; Wolfe, Evans, Drew, Aizenman, & Josephs, 2016),
pilot perception in the aviation cockpit (e.g., Bellenkes,
Wickens, & Kramer, 1997; Kasarskis, Stehwien,
Hickox, Aretz, & Wickens, 2001; Schriver, Morrow,
Wickens, & Talleur, 2008; Ziv, 2016) and 2D aerial
imagery analysis (Lansdale, Underwood, & Davies,
2010; Šikl, Svatoňová, Děchtěrenko, & Urbánek, 2019).
Performance metrics tend to show that experts require
less time, have higher accuracy and produce fewer
errors than novices in detection and classification tasks
within their domain of expertise. Much of the existing
literature on visual expertise has used eye-tracking
to study saccades, gaze dwell time, and the number
of fixations. Such studies measure how observers
foveate the image, providing insight into how image
properties and features prompt attentional deployment.
In general, experts tend to spend less time at each
fixation point before making decisions or moving on to
a new fixation point. Experts also tend to make fewer
fixations on task-irrelevant items and locations. Studies
have also shown that experts gain more information
from briefly presented (<250 ms) domain-related

images (e.g., Drew, Evans, Võ, Jacobson, & Wolfe,
2013; Evans, Georgian-Smith, Tambouret, Birdwell, &
Wolfe, 2013; Kundel & Nodine, 1975), suggesting that
experts process more task-relevant visual information
from global scene structure in the first glance. All this
suggests that experts are more efficient than novices in
processing global scene structure for guiding initial eye
movements toward task-relevant areas of an image.
Importantly, expertise is typically domain specific, and
experts are no better than novices at tasks outside of
their domain of expertise (Nodine & Krupinski, 1998;
Reingold, Charness, Pomplun, & Stampe, 2001).

Although the research above has revealed domain-
specific changes in gist processing and search strategies,
eye-movement studies can say little or nothing about the
information being extracted in each fixation, nor how
this differs across experts and novices. Classification
images (CIs) offer a possible way to do this.

The CI method is a psychophysical technique that
allows researchers to characterize internal perceptual
templates, illustrating visual information sampling
strategies (Ahumada, 1996; Eckstein & Ahumada,
2002; Murray, 2011). In a typical CI study, observers
are tasked to detect or discriminate a target that is
masked by random visual noise textures. These random
textures act as a generalized mask, making detection
or discrimination more difficult. However, they also
have a modulating effect on the target, promoting
or demoting detection on a trail-by-trial basis. For
example, detection of a white target would be promoted
by white pixels in the noise and demoted by black
pixels. To generate a CI, noise textures are accumulated
from each trial depending on the observer’s responses.
If enough noise samples are averaged, features that
support detection or discrimination of the target are
revealed.

CIs have provided valuable insights into visual
information sampling strategies for extracting relevant
image features (Abbey & Eckstein, 2002; Abbey &
Eckstein, 2006; Ahumada, 1996; Beard & Ahumada,
1998; Beard & Ahumada, 1999), illusory shapes and
perceptual completion (Gold, Murray, Bennett, &
Sekuler, 2000; Gosselin & Schyns, 2003; Kontsevich &
Tyler, 2004), stereoscopic surfaces (Gosselin, Bacon,
& Mamassian, 2004; Neri, Parker, & Blakemore,
1999), localization tasks (Abbey & Eckstein, 2014;
Abbey, Lago, & Eckstein, 2021), and the spatial
extent of luminance contrast pooling (Baker &
Meese, 2014). The method has also been used to
investigate perceptual learning (Dobres & Seitz, 2010;
Gold, Sekuler, & Bennett, 2004; Kurki & Eckstein,
2014; Li, Levi, & Klein, 2004). In these studies, the
perceptual templates increased in amplitude and
area with practice, making greater use of relevant
stimulus information. Since the ideal template is
a perfect match to the target (Abbey & Eckstein,
2006; Ahumada, 1996; Beard & Ahumada, 1998;
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Chauvin, Worsley, Schyns, Arguin, & Gosselin, 2005),
the degree of match between CIs and the target can
serve as a metric for the observer’s performance. Thus,
CIs could be used to compare experts and novices for
image-based tasks in various domains of expertise.

The current study and specific background

Here, we test the ideas above for a set of specific
predictions (described below) using the CI technique
to compare the visual strategies of expert remote
sensing surveyors with those of novices. We did this
for the discrimination of two landscape features
that have similar visual textures but dissimilar 3D
relief: hedges and ditches. In principle, these can
be discriminated from luminance and/or binocular
disparity cues. (We consider the details of these depth
cues later).

The experimental approach we developed for
investigating the above is novel. By imposing spatial
noise made from luminance textures and random
binocular disparities onto stereoscopic landscape
images we were able to derive simultaneous pairs of
CIs for each observer. By examining and quantifying
these we then established how observers used disparity
and luminance cues when performing hedge/ditch
classifications. Our image treatments involved a 2 ×
2 manipulation where we flipped: (1) the disparity of
half the images (to produce pseudoscopic viewing),
so that hedges had ditch-like disparity profiles and
vice-versa, and (2) the orientation of half the images
(mirror-reversed around a horizontal axis) to change
the lighting and shading cues (see below). We predicted
that experts would make more use of disparity cues
than novices, and thus have more clearly defined
disparity CIs for two reasons. First, an informal
preliminary report from author A.O.—a remote sensing
instructor at the OS—, advised that hedges and ditches
are typically identified according to their perceived
stereoscopic relief (i.e., their 3D quality). Second, the
expert surveyors in our study were more experienced
than novices in making photogrammetric judgments
involving disparity cues. Even so, we also expected
participants to combine disparity and luminance cues
instead of completely ignoring one of them because
cue combination tends to support stronger stereoscopic
perception (Doorschot, Kappers, & Koenderink,
2001; Hartle, Irving, Allison, Glaholt, & Wilcox,
2022; Hibbard, Goutcher, Hornsey, Hunter, & Scarfe,
2023; Lovell, Bloj, & Harris, 2012; but see Chen &
Tyler, 2015 where luminance cues made disparity cues
redundant).

Regarding the form of the CI templates, we expected
that crossed and uncrossed disparities would promote
“hedge” and “ditch” responses, respectively, regardless
of the ground truth of the image owing to the

unambiguous 3D relief of tall hedges and deep ditches
in the real world. We also predicted that luminance
would be an influential factor because luminance
contrast is important for depth perception (Egusa,
1983; O’Shea, Blackburn, & Ono, 1994) under two
different assumptions about shape from shading. On
the assumption of diffuse lighting, surface peaks and
troughs align with light and dark image regions, leading
to the perception that “dark is deep” (Cooper & Norcia,
2014; Hibbard et al., 2023; Langer & Bülthoff, 2000;
Langer & Zucker, 1994; Potetz & Lee, 2003; Schofield,
Rock, & Georgeson, 2011; Sun & Schofield, 2012).
On the assumption of punctate lighting, a single-point
light source means luminance peaks are perceived as
surfaces facing that light source, such as a hedge with
a highlight on the side facing the sun (Adams, Graf, &
Ernst, 2004; Berbaum, Bever, & Chung, 1983; Brewster,
1826; Koenderink, van Doorn, Kappers, te Pas, &
Pont, 2003; Mamassian & Goutcher, 2001; Pont, van
Doorn, & Koenderink, 2017; Ramachandran, 1988;
Rittenhouse, 1786; Schofield, Rock, & Georgeson,
2011; Stone, Kerrigan, & Porrill, 2009; Sun & Perona,
1998; Sun & Schofield, 2012). These assumptions
invoke subtly different relationships between luminance
and shape. In our experiment, a diffuse lighting prior
predicts a strategy of “hedges are light and ditches are
dark” (dark is deep), with luminance peaks (hedges)
and troughs (ditches) aligned with the center of the
landscape feature. On the other hand, if the lighting
is assumed to be punctate, then this predicts luminance
peaks on surface slopes that face toward the assumed
light source and thus an offset between such peaks and
the center of the landscape feature in the direction of
the assumed light source. For example, consider an
observer who assumes lighting from above, by which
we mean from the top of the 2D image plane (note that
to avoid confusion of terminology with top/bottom
and above/below in 3D, we will refer to this direction
as “north,” meaning the top of the page regardless
of what a compass would say). This observer would
expect convex hedges to have a highlight toward the
“northern” part of the feature, with less luminance
in the “southern” part, representing a shadow or
internal shading. Similarly, our hypothetical observer
would expect a concave ditch lit from the “north”
to be lighter toward the “south” of the feature, as
light would not reach the “northern” concave region
owing to surface depth occlusion. As we shall see,
these asymmetries are important for the details of the
luminance CIs.

The predicted outcome under the punctate lighting
hypothesis is complicated further by the OS’s practice
of presenting aerial imagery with geographic north at
the top of the image, consistent with most geographic
maps. However, in the United Kingdom (UK), the sun
shines predominantly from the south. This produces
aerial images that are lit from the “south,” in this
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case, meaning from the bottom of the page/screen.
Expert remote sensing surveyors are thus accustomed
to viewing aerial images as if lit from below their line
of sight, which conflicts with a well-known bias in the
population known as the lighting-from-above prior1
(e.g. Adams, et al., 2004; Ramachandran, 1988; Sun &
Perona, 1998). As the experts have spent many years
working with aerial imagery lit this way, we speculated
that their natural lighting biases might have diminished,
or even switched direction. We made no predictions
about whether either of the two lighting assumptions
(punctate or diffuse) would dominate in the experiment,
accepting we might see both, but under the punctate
lighting prior, we expected luminance peaks in the CI
to be offset “north” of the perceived center line of
hedges for novices, as per the conventional prior, but
“south” of them, or with smaller offsets, for the experts.
Similarly, under this hypothesis, we expected bi-lobed
luminance CIs for the reasons to do with lighting
and shading outlined above. More generally, because
novices and experts have potentially different priors, we
expected the two groups to have different sensitivities
to image orientation (lighting direction in the hedge
and ditch images) and to have qualitatively different
luminance profiles in their classification images.

Overview and aims

In the work here, we introduced a novel variant of
the CI technique designed to provide simultaneous
estimation of luminance and disparity templates. We
did this for a feature identification task using aerial
images to address the research questions introduced
above and summarized below as hypotheses. These
concern the expected differences between experts and
novices and serve to scaffold our results. However, our
observations and conclusions extend beyond these a
priori expectations.

H1, Utilization of stereoscopic cues: We expected
that experts will be better in sampling relevant
information from stereoscopic aerial images. This will
be shown by greater amplitudes and greater spatial
extents of the disparity CIs for experts compared to
novices. Further, experts will show greater sensitivity to
the stereoscopic profiles of targets, as revealed by their
accuracy in categorical ratings.

H2, Lighting direction bias: Compared to novices,
experts will have different or diminished lighting
direction biases, and, by this token, novices will show
a greater tendency to lighting from above in their CIs
compared to experts. Further, regardless of their CI
structures, experts and novices will show different
sensitivities to lighting direction, with novices having a
greater tendency to respond according to an assumption
of lighting from above.

Methods

Visual stimuli and the image generation pipeline

High-resolution aerial-view landscape photographs
covering land areas of approximately 2.5 km × 1.5
km were sourced from the OS. Stereogram pairs were
created using two images that covered overlapping
landscape areas, spaced apart along the aircraft’s
flight path. Six landscape features were isolated:
three landscape features were hedges, found in
Cambridgeshire, UK, and three features were ditches,
found in Somerset, UK. Features were selected based on
the following criteria: (1) the levels of shadow/sunlight
were moderate; (2) the features were horizontally aligned
within 15° of the aircraft’s flight path to facilitate
horizontal binocular disparity; (3) the features were of a
similar vertical extent and spread across the width of the
image segment selected; (4) the features were straight;
and (5) the features had usable stereoscopic information
(shallow ditches were excluded) as judged by two of the
authors.

The six image pairs were processed with MATLAB
(MathWorks, Inc.) and Python to create landscape
stimuli. Each image was: (1) rotated to horizontal
alignment using bicubic interpolation (mean rotation =
7.35° and range = 0–14.5°); (2) resized so that features
had the same vertical extent using bicubic interpolation
(mean scale factor = 0.85 and range = 0.52–1.2); (3)
linearized to undo a compressive nonlinearity applied
in the OS image pipeline; (4) converted to grayscale
using Equation 1:

L = 0.2125R + 0.7152G + 0.0722B, (1)

where L = luminance, R = red color channel, G = green
color channel, B = blue color channel; (5) cropped
to 128 × 128 pixels; and (6) standardized to have the
same mean luminance and average root-mean-square
contrast as the 12-image set. The images were processed
and stored at 16-bit greyscale resolution throughout to
prevent losses. These transformations were designed to
produce horizontally oriented target features of similar
sizes while removing color and luminance variations
in the original photographs that may have varied due
to the feature types being photographed at different
locations, time of year, and time of day. Figure 1 shows
the final images used in the study.

Introducing the dual-noise test-image for CIs
In a novel step, we imposed both luminance and

disparity noise onto our test images allowing the
simultaneous estimation of luminance and disparity
CIs. A unique white noise texture (range ±1.0, 128
× 128 pixels) with randomly varying, non-zero mean
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Figure 1. The landscape features used in our stimuli
(see Figure 3) after the minor rotation needed to achieve a
visually horizontal feature. The top and bottom three pairs are
hedges and ditches, respectively. The images are stereogram
pairs arranged for free-fusion. These images are shown with
geographic north at the top of each image as per OS practice
(see text for details). In these images, our terms “north” and
“south” refer to the upper and lower halves of the images (and
their parts), respectively, and also, to a first approximation, the
compass. Notice subtle lighting cues owing to sunlight
originating as if from the “south” in these images. © Crown
copyright and database rights 2024 OS, used with permission.

was generated on each trial. This texture was low pass
filtered with a first order Butterworth filter with a cutoff
frequency of nine cycles per image. The noise texture
was then added to the two landscape images in each
stereoscopic pair to create noise + feature images (noise
and image contrasts were normalized to 35% and 65%
of their original contrasts, respectively).

Figure 2. Example Z-coordinate texture used to map random
disparities.

Another low pass filtered noise texture (with
properties as above) was generated on each trial to
create a random disparity map describing disparity
offsets (see Figure 2 for an example image). Pixels
in the two noise + feature images (one for each eye)
were displaced horizontally by an amount determined
by the random disparity map, thus adding disparity
noise. Each image in the stereo pair bore half the
required shift so that the images for the two eyes were
transformed equally but in opposite directions. When
presented in the stereoscope (described below) this
produced a range of 0–296 arcseconds of random
disparity (quantized to 8 levels) in the stimulus image
pair and required sub-pixel shifts in the position of
each pixel in the noise + feature images.

Figure 3 illustrates the procedure for adding noise
to the stimulus images, including the process for
producing sub-pixel shifts, which was similar to the
one used by Georgeson, Yates, and Schofield (2009).
Each noise + feature image was first upsampled in the
horizontal direction by a factor of 10 to produce a
128 × 1280-element image. The upsampled luminance
elements were then displaced based on values taken
from the equivalent location in the disparity map
(see Figure 2). The amount of displacement applied
varied horizontally across the image meaning that
two or more luminance elements in the original
image could be displaced to the same location in
the transformed image. To address this problem, the
competing luminance element that was subject to the
least crossed disparity (i.e., the one that would appear
furthest from the observer) was discarded and only
the element subject to the most crossed disparity (i.e.,
closest to the observer) was retained. The disparity
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Figure 3. Dual-noise procedure for making stimulus images on
each trial using the hedge and ditch images in Figure 1. Paired
images are arranged for crossed fusion and with the low
signal-to-noise ratios used in the experiment. This means that
the cross-fusing reader is unlikely to witness much meaningful
signal. See text for further details. Top image pair, © Crown
copyright and database rights 2024 OS, used with permission.

shifts could also result in gaps where no luminance
element was assigned to a location in the transformed
image. These gaps were filled with random luminance
values sampled from a white noise texture. The image
array was then downsampled in the horizontal direction
by averaging, thereby recreating the original image
resolution. Where determined by the disparity map,

Figure 4. Hexagonal lattices where the light and dark parts of
the image provide cues to interpreting 3D relief. (A) Is the same
as (B) but rotated by 180°. These images are included to
demonstrate our point about lighting direction and the
perception of 3D shape and were not used in the experiment.

this procedure resulted in sub-pixel disparity shifts
by virtue of subtle variations of luminance between
the two eyes such that the “center of mass” of the
grey values comprising features in the stereo pair was
subtly shifted in each eye. Note that the random/noisy
disparity shifts were applied in addition to the existing
disparities between features in the original landscape
images. Thus, the original disparities were retained but
were heavily distorted by the disparity map analogous
to the distortion of the original luminance features by
the luminance noise.

Finally, the inverse gamma functions of the monitors
were applied to the stereo image pairs to ensure that
luminance was linear for our displays. The bottom part
of Figure 3 shows an example stimulus pair. Stimulus
images were intentionally masked heavily with both
luminance and disparity noise because the CI technique
benefits from the strong influence of noise on behavioral
responses.

Disparity and lighting direction
Before applying the luminance and disparity noise

described above the stimuli were treated in each of two
ways. In one manipulation, the landscape images were
swapped between the two eyes, so that the disparity of
the hedge or ditch was inverted. A hedge image thus
changed from having substantially crossed disparity
to substantially uncrossed disparity and appeared
ditch-like, and vice versa for the ditch images. In
a second manipulation, the landscape images were
inverted about their horizontal axis, maintaining
horizontal disparities but inverting the spatial relations
of light and dark image features. In principle, these
features can provide cues to 3D relief from highlights
and shading. For example, most people report that
the middle hexagon in Figure 4a looks like a bump
while the same image region in Figure 4b, rotated
by 180°, looks like a dimple (Ramachandran, 1988).
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Underpinning these perceptions is an assumption that
lighting comes from above. Therefore, we wondered
whether image orientation would also influence the
perception of hedges verses ditches.

Each of our two image treatments was performed on
a trial-by-trial basis with an independent probability
of 50%. This created a stimulus set with an overall 2 ×
2 × 2 design (hedge/ditch; correct/inverted disparity;
original/inverted orientation).

Equipment

Participants were seated in a dimly lit and secluded
room with their chins on a chinrest in front of a mirror
stereoscope. The monitors provided the primary light
source in the room, apart from in the testing room
in Southampton (see below), where window blinds
allowed low levels of diffuse daylight to enter the room.
This light applied equally to both viewpoints in the
stereoscope. Two front-surface mirrors angled at 45°
were mounted 6 cm in front of the participant. These
directed images to the observer from two ASUS ProArt
PA329C monitors (3840 × 2160 pixels, 710 × 405 mm
active screen region) placed on either side of the mirror
mount with a total viewing distance of 990 mm. Each
monitor pixel subtended 37 arcseconds. Images were
scaled in PsychoPy (version 2020.2.10; Peirce et al.,
2019) so that a single element from a stimulus image
occupied 5 × 5 pixels on the monitors. Thus, images
subtended 6.58 degrees of visual angle and the average
disparity of the tops of the hedges in pre-noise stimuli
was estimated at about 308 arcseconds. Apart from the
pre-processing noted above, stimuli were generated and
presented using PsychoPy with a modified version of
the noise component.

Participants and ethical considerations

Twelve participants (mean age = 38.7 years and
range = 23-62 years) were recruited by targeted email
advertisement or direct communication. Participants
were categorized as experts or novices depending
on their level of experience with remote sensing
surveying. An expert was defined as someone with
two or more years of experience with remote sensing
photogrammetric tasks. A novice was someone with no
experience with remote sensing photogrammetry. Six
participants were experts (mean age = 43.8 years and
range = 23-62 years) and employees at the OS with an
average of 8 years of experience (range = 2-20 years).
The six novices (mean age = 33.5 years and range =
25-45 years) comprised two non-surveying staff at the
OS, one staff member at Aston University, and three
PhD students. The eight OS employees were tested
at their offices in Southampton, UK, and the other

TNO threshold, arcseconds

Participant Experts Novices

1 15’’ 120’’
2 30’’ 60’’
3 30’’ 15’’
4 30’’ 30’’
5 450’’ 15’’
6 30’’ 60’’

Table 1. TNO thresholds for all 12 participants who took part in
the experiment. TNO threshold describes stereoacuity
threshold in arcseconds from the TNO test. Participant/
observer numbers are nominal and correspond to the
participant numbers in the figures below.

four participants were tested on the Aston University
campus, Birmingham, UK. Both groups had an average
of 4 years of completed university-level education. No
participant was experienced in creating or participating
in psychology or psychophysics studies. Participants
gave informed consent and were compensated with
payment at a rate of £10 an hour. All participants were
assured that their data, including screening data, would
be confidential and anonymized before discussion
between the authors. The project was reviewed
by Aston University’s College of Health and Life
Sciences Ethical Review committee (approval number
1843).

Screening and exclusion procedure

A screening procedure assessed the eyesight and
binocular stereopsis of each potential participant
for the experiment. Participants wore their normal
optical correction where appropriate. They were tested
for standard visual acuity using a Snellen test and
undertook the “gold standard” (Garnham & Sloper,
2006) TNO test for stereoscopic vision; based on
random-dot-stereograms that provide no monocular
cues to the target.

The results of the TNO test are shown in Table 1
and are within normative bounds of a sample of 1058
participants who had a median TNO stereoacuity of
60 arcseconds (Bosten, et al., 2015). No exclusion
criterion was set for this test. We will return to Expert
5’s relatively high TNO threshold later in the paper but
note that Bosten et al. (2015) reported that 8.9% of
their sample had a TNO stereoacuity measure of ≥480
arcseconds.

Participants were familiarized with the stereoscope
by observing 10 images that contained either a “flat”
texture or a stereoscopic texture with a square target
defined by crossed disparity. Participants then carried
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out a discrimination task (40 trials) where a central
disparity-defined square (740 arcseconds of disparity
and side length 1.44 degrees of visual angle) had either
crossed or uncrossed disparities. The task was to report
whether the square was in a “near” or “far” depth plane
compared to the surround. Responses were made by
pressing a button on a keyboard. Participants had to
score above 90% correct to pass this test. Those who
failed were thanked for their time and given £5. The 12
participants described above passed this screening test,
but this test led to the exclusion of two other novice
participants and no experts.

Experimental procedure

Preliminary procedure: General familiarity
To familiarize all participants with the concept of

aerial stereoscopic imagery, they were shown the same
ground view photograph of two houses followed by an
OS aerial stereogram pair of the same houses viewed
through the stereoscope. They were told that these
were different views of the same scene, the second one
from above, and that they would be viewing aerial
images containing stereoscopic depth like the houses
but showing hedges and ditches. Participants were then
shown ground-view images of a hedge and a ditch
and told they would be looking for these features but
from an aerial perspective. They were not shown any
aerial-perspective images of hedges and ditches as part
of the familiarization procedure, and they were not told
how many different images they would be shown.

Preliminary procedure: Familiarity and instructions
At the start of their first experimental session,

participants practiced for approximately 20 trials under
the supervision of author E.S. following the main
procedure below. They were instructed to press the left
and right arrow keys on a keyboard for “ditch” and
“hedge” responses, respectively. They were told that
the task would often feel very difficult, but they should
make their best estimates to find hedges and ditches.
They were also told that various hedge and ditch stimuli
would be presented, and that these were always in
the same location and had the same size. The author
gestured with his hand to highlight the shape outline
and the size of the hedges and ditches over the monitor.

To ensure appropriate vergence control, between
each trial a black fixation cross was presented in the
center of the screen. The vertical bar of the cross was
split across the two eyes. To achieve good convergence,
participants were instructed to fuse the cross to make
it appear “complete,” like a “+.” If the cross appeared
to drift apart, participants were instructed to close
their eyes or look away for a moment to “reset” their

convergence and on returning attention to the display,
to wait until the cross appeared fused before making
their response which would also start the next trial. To
further aid fusion, a high contrast border featuring
white rectangles on a black background surrounded the
image presented to each eye.

Main procedure
Stimuli were presented for 750 ms and participants

were allowed unlimited response time. No feedback was
provided. A response triggered a new trial after a 630 ms
delay. The high contrast border surround and the
fixation cross were always present, except the fixation
cross was removed when the stimuli were displayed.

The stimuli were presented with congruent or
incongruent disparities and original or inverted
orientation (see above) with equal probability on
each trial. The third stimulus factor (original target
feature = hedge or ditch) was blocked (i.e., a block
of trials contained either only original hedges or only
original ditches) but participants were not informed
of this. This was done because there were differences
between the two sets of images (e.g., time of day/year,
geographic location, and isolated grassland features) all
unconnected but correlated with the intended feature of
interest. By blocking stimuli in this way, we ensured that
such extraneous features could not influence decisions
within each block. (We discuss the implications of
this in a later subsection.) The disparity reversals
applied within each block ensured that the stimuli
were presented as hedge-like and ditch-like with equal
probability on each trial regardless of the block type.
Sessions alternated between block type with the starting
order counterbalanced across participants. Each session
contained a single block of 500 trials and there were 20
sessions lasting about 15 minutes each giving a total
of 10,000 trails per participant. Breaks were permitted
between sessions and sometimes this was overnight.
Eleven participants completed the experiment over
3 days, for one participant, it took 4 days. The total
experimental time for each participant was about 6
hours.

Following their final session, participants were
asked to describe what they had been looking for
when deciding whether stimuli were hedges or ditches.
Participants were also asked whether they were aware
of sunlight and/or shading influencing their decisions.

Results and discussion

Debriefing

Expert 3 and Novices 2 and 4 reported using a
specific luminance strategy where hedges and ditches
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were assumed to be light and dark, respectively (i.e.,
a “dark is deep” strategy). The other five experts and
four novices reported using stereoscopic depth as a
primary strategy. These experts also stated that when
luminance cues were used (consistent with “dark
is deep”) this was usually as a secondary strategy.
No participant mentioned that sunlight direction or
shadow location influenced their decisions when asked
about the direction of the light source. This suggests
that participants were unaware of using a punctate
lighting assumption. No participant mentioned the two
block types.

Organization of main results

In the main, we deal with issues around disparity
first followed by those around lighting and luminance,
starting with CIs, progressing to categorical details,
then returning to CIs. However, we begin with some
overall observations of the CIs then describe how we
quantified them before turning to interpretation and
our hypotheses.

Classification images and informal observations

Luminance CIs were generated from the original
noise textures before the addition of the signal images
and the application of disparity noise algorithm.
Disparity CIs were generated from the Z-coordinate
maps for the disparity texture noise textures, without
signal (see Figure 2), where light pixels represent crossed
(“near”) disparity, and dark pixels represent uncrossed
(“far”) disparity. (Our convention here means that
the CI grey levels relate to implied 3D relief in the
same way for both types of CI.) For each participant,
noise textures for luminance and disparity were tagged
according to the “hedge” or “ditch” response on each
trial and compound images were generated by summing
the images for each tag. To generate a CI from all 10,000
trials, “ditch” response compounds were subtracted
from “hedge” response compounds (Ahumada 1996;
Murray, 2011). Figure 5 shows CIs for each of the 12
participants revealing individual decision templates for
luminance and disparity. Some implications of this
analysis are considered in the Supplementary file.

Experts produced stronger CIs for disparity than
luminance, whereas this was the other way around
for novices. This suggests that the two groups used
different classification strategies. The center regions of
the disparity CIs in Figure 5 are white, indicating that
crossed disparity appeared hedge-like and uncrossed
disparity ditch-like, as to be expected. Individual
differences in lighting assumptions are observed in
the luminance CIs consistent with the lighting bias
hypothesis (H2), as follows. For some participants,

Figure 5. Classification images (CIs) for disparity and luminance
where “ditch” response textures were subtracted from “hedge”
response textures. For both types of classification image, lighter
and darker pixels represent mounds and troughs, respectively.
Thus, for the disparity CIs, the light regions derive from
observers responding “hedge” and “ditch” when there were
crossed and uncrossed disparities in those image regions,
respectively. For the dark regions, the disparities were
uncrossed and crossed, respectively. Similarly, for the
luminance CIs, the light regions derive from observers
responding “hedge” and “ditch” when there were light and dark
pixels in those image regions, respectively. For the dark regions,
the pixels were dark and light, respectively.
Observer/participant numbers are nominal. The bottom row of
the figure presents group-average CIs.

the template centers are white, indicating that lighter
patterns appeared hedge-like and darker patterns
ditch-like, consistent with a diffuse lighting assumption
in shape from shading (e.g., Expert 3 and Novices 2
and 4). For other participants, the luminance CIs show
centrally offset positive and negative peaks, consistent
with the influence of a punctate lighting assumption on
the identification of hedge-like and ditch-like stimuli
(e.g., Novices 1, 3, and 5). We provide further discussion
of individual differences below.

From casual inspection of the partial CIs from each
of the six original hedge and ditch images (see Figure 1),
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no systematic differences were observed across the
different images (results not shown), confirming that
participants were consistent in their use of visual
strategies across the six images.

Quantifying the CIs

To facilitate quantitative visualization of the
differences between the experts and novices, we plotted
cross-sections of the CIs for disparity (Figure 6) and
luminance (Figure 7). Figure 6a shows the vertical
cross-sections produced by averaging all the pixel
columns in the disparity CIs (recall that the target
features were horizontal) and has a profile like a
Difference of Gaussians with a central positive lobe
and two flanking negative lobes (sometimes called
a “Mexican hat”). Figure 6b shows the horizontal
cross-sections produced by averaging the 20 central
rows of pixels (±10 from the center) corresponding with
the target location. Only this central region was used
for the horizontal cross-sections to avoid cancellations
from the outer regions (see Figure 6a) with opposite
sign. Figure 6b reveals a curved profile with a peak
in the center of the CI. The dashed and solid curves
in Figure 6 are for the novices and experts, respectively,
and illustrate large group differences for disparity.

The treatment of the luminance CIs in Figure 7
is similar to that for the disparity CIs in Figure 6,
but the outcome is different. Figure 7a shows that all
observers have distinct positive lobes and several also
have negative lobes but often weighted more heavily
on one side than the other. Furthermore, while several
observers have central peaks, others have peaks offset
from the center, the most prominent of which are to
the left. This corresponds with “north” (up) in the
stimuli, although, in some cases, the offset is in the
other direction. These differences necessitated special
treatment for the averaging in Figure 7b. As the negative
lobes in Figure 7a were offset for some observers, they
were prone to cancel the positive lobes when averaged
across the central 20 rows. Therefore, to preserve
amplitude, these rows were full-wave rectified before
averaging.

With the cross-sections defined as above, we
characterized them by fitting Gaussian (Equation 2)
and Gabor (Equation 3) functions to the horizontal and
vertical cross-sections, respectively:

f (x) = Aexp

(
− (x − μ)2

2σ 2

)
, (2)

f (y) = Aexp

(
− (y − μ)2

2σ 2

)
cos

(
2π

y
λ

− ψ
)

, (3)

Figure 6. Cross-sections of disparity classification images.
(A) Vertical cross-sections. Left of center corresponds to
“north” in the hedge and ditch images. (B) Horizontal
cross-sections of the central 20 rows. Experts and novices are
shown by solid and dashed curves, respectively. Different colors
are for individual observers; thick curves show group averages.

where x and y are column and row numbers (in pixels
units, with 0 in the center), A is amplitude, μ is spatial
offset (in pixels), σ is spread (standard deviation in
pixels), λ is wavelength (in pixels), and ψ is the absolute
phase offset (in radians) of the co-sinusoidal component
of the Gabor function. Absolute phase offset (ψ)
was subtracted rather than added (Equation 3) to
harmonize the signs between spatial and absolute phase
offsets. For convenience, absolute phase offsets were
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Figure 7. Cross-sections of luminance classification images. The
details are as for Figure 6. (A) Vertical cross-sections.
(B) Horizontal cross-sections of the central 20 rows after
full-wave rectification (see text for further details).

converted to pixel units, ψpix (Equation 4):

ψpix = λψ/2π, (4)

This makes the absolute phase offset parameter,
ψpix, directly comparable to the spatial offset of the
Gaussian, μ. Absolute phase (ψ) changes the peak
position of the cosine component, and spatial offset
(μ) changes the peak of the Gaussian envelope. The
asymmetry of the Gabor function depends on the
relative values of these two offsets. This was captured by
a relative phase parameter (ϕ pix), derived by subtracting

the spatial offset (μ) from absolute phase (ψpix) and
converted back to radians to give, ϕ. Thus, μ, expresses
the lateral shift of the entire Gabor function and ϕ (and
ϕ pix) expresses the phase shift relative to this. Curve
fits were estimated using MATLAB’s Curve Fitting
ToolBox.

Equation 2 (the Gaussian) has three free parameters
(A, μ, and σ ) and Equation 3 (the Gabor) has five—the
same as the Gaussian plus λ and ψ (or ψpix), or
alternatively, λ and ϕ (or ϕ pix). In addition to these
parameters, the location of the Gabor peak (which
depends on μ, σ , and ϕ pix) was determined using a
MATLAB implementation of the Nelder-Mead simplex
algorithm to find the lateral position, P, of the function
maximum.

The fits of Equations 2 and 3 to the group averages
from Figures 6 and 7 are shown in Figure 8, and
their parameter values are reported in Tables 2 and 3,
respectively. The Gabor fits to individual observers are
shown in the Appendix for the disparity and luminance
CIs, respectively. Our aim was to use whichever of
the parameters above served us best in evaluating our
hypotheses. As we shall go on to illustrate, these proved
to be: A, ϕ, P, and σ . By comparison, λ and ψ , did
less to distinguish between the factors of interest. They
are included in Tables 2 and 3 for completeness but we
do not consider them further. The spatial offset of the
Gaussian, μ, was arguably more valuable, but for the
vertical cross-sections it was subsumed by P. For the
horizontal cross-sections, μ was always significantly
negative meaning the fitted Gaussians were shifted a
little to the left. We have no explanation for this but
given the variability of the data around the fitted profile
(see Figures 8c, 8d) we think the observation conveys
little or nothing of value and do not consider μ any
further.

Interpreting disparity CIs

The amplitude (A) of the average disparity CIs
(Figure 8) was about five-times greater for the experts
than for the novices (left of Tables 2 and 3; red and
black curves in Figures 8a, 8c), confirmed by an
independent samples t-test (Welch’s t(5.59) = 3.79,
p = 0.005; one-tailed). However, for the vertical
cross-sections (see Table 3), the Gabor spread (σ ) for
the novices was slightly greater than for the experts,
although no reliable differences for the Gaussian
spreads (σ ) of the horizontal cross-sections were found
(see Table 2). Thus, the disparity CIs suggest that
experts were better than novices at using disparity
cues for depth (H1), although they did not sample this
information over a greater spatial extent than novices.

Both groups reportedly attempted to use disparity
cues (see Debriefing, above) but experts prioritized
them over luminance cues, particularly by comparison
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Figure 8. Fits of descriptive curves to the group averaged cross-sections of the CIs (see Figures 6 and 7). (A) Vertical disparity results
fitted by Gabor functions. (B) Vertical luminance results fitted by Gabor functions. (C) Horizontal disparity results fitted by Gaussian
functions. (D) Full-wave rectified (see text for details) horizontal luminance results fitted by Gaussian functions. The origin of the
x-axis is the stimulus center. In the top row, left-to-right along the x-axis corresponds with top-to-bottom in the vertical CIs.

Fitted Gaussian parameters to horizontal
disparity CIs (with 95% confidence bounds)

Fitted Gaussian parameters to horizontal
luminance CIs (with 95% confidence bounds)

Group Experts Novices Experts Novices

Amplitude A 5.33 (5.19 to 5.48) 1.07 (0.98 to 1.15) 2.06 (1.96 to 2.15) 3.68 (3.46 to 3.90)
Spread σ 29.58 (28.61 to 30.55) 27.78 (25.1 to 30.47) 38.63 (35.98 to 41.27) 26.82 (24.9 to 28.75)
Spatial offset µ −7.35 (−8.26 to −6.43) −5.21 (−7.79 to −2.62) −3.74 (−5.92 to −1.56) −4.02 (−5.89 to −2.14)
Adjusted R2 0.937 0.663 0.682 0.715

Table 2. Gaussian parameters (Equation 2) for fits to the group average horizontal CIs (see Figures 8c, 8d). Non-overlapping
confidence intervals between groups are shown in bold. (Confidence intervals were estimated directly from the data with MATLAB’s
“confint” function). Goodness of fit is shown by adjusted R2. Parameter values that belong to the x-axis in the figures (σ , µ) are in
pixel units. Negative spatial offsets indicate leftward lateral shifts of the peaks in Figures 8c and 8d.

to novices. Seeing this in the group fits (see Table 3)
is problematic because we have no measure of noise
equivalence across noise type (disparity and luminance)
and cannot derive signal amplitude-to-noise ratios to
make the relevant comparisons. We addressed this by
dividing the amplitudes from the fits to the 12 individual

observer results (see Appendix) by their mean for each
noise type. A two-way repeated measures ANOVA
(Group = expert and novice; Cue type = disparity
and luminance) on these normalized results revealed
a significant interaction between participant group
and cue type (F(1, 5) = 15.61, p = 0.011)2: on average,
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Figure 9. Interaction of CI amplitudes across cue type and
groups. The amplitude, A, for each of the 12 participants (see
Appendix) was normalized for each noise type (disparity and
luminance) by dividing by their relevant mean. Error bars are ±
95% confidence intervals.

experts prioritized disparity over luminance but this was
the other way around for novices (see Figure 9). Note
also that the luminance amplitudes (A) for the novices
were higher than for the experts (see Tables 2, 3). This
means the expert superiority with disparity cannot be
attributed simply to greater engagement with the task
since under that account, we would not expect novices
to outdo experts on luminance cues.

Notably, the CI disparity difference for experts and
novices did not derive from stereoacuity because the
two groups did not differ in their TNO test scores
(see Table 1; one-way ANOVA; Welch’s F(1, 5.53)
= 0.430, p = 0.538). When Expert 5 was removed
as an outlier (see Table 1), the difference remained
nonsignificant (Welch’s F(1, 5.34) = 1.93, p = 0.220).
Furthermore, Expert 5 had a TNO threshold (450
arcseconds) 15 times higher than the median and modal
TNO threshold in our sample (30 arcseconds) but
produced a higher contrast disparity CI than any novice
nonetheless (see Figure 6a). A further observation is
that the side-lobes in the disparity templates were more
apparent for experts than for novices (Figures 6a & 8a).
This shows that with experience, decisions about a
feature’s stereoscopic profile are influenced more by the
surrounding context.

Signal detection analysis (d′ and bias)

The sensitivity measure, d′, is a bias-free estimate
of an observer’s sensitivity to signal under the tenets
of signal detection theory (Green & Swets, 1966;
Macmillan & Creelman, 2004). In a traditional yes/no
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procedure, the signal is the stimulus the observer is
trying to detect, and the ground truth is whether the
stimulus was presented. In our CI experiment, trials
were single intervals and always contained a stimulus
feature—either a hedge or a ditch. Nonetheless, for
our stimulus-response task, we are free to assign either
one of these (e.g., hedges) to the target category, and
record hits (hedge-hedge), misses (hedge-ditch), false
alarms (ditch-hedge) and correct rejections (ditch-ditch)
in the conventional way to derive d′3. However, our
stimuli were counterbalanced in a 2 × 2 × 2 design
for image factor, so what defines the signal among the
eight different possibilities? To address this, we used
d′ analysis in an inventive way to investigate whether
the categorization of our stimuli as hedge-like or
ditch-like was influenced by each of our three image
factors/manipulations. This required defining the signal
in our analyses in each of three ways: (1) luminance
image content across the photographs (physical hedge
or ditch), (2) binocular disparity (crossed (convex)
or uncrossed (concave)), and (3) lighting highlights
and shadows (consistent with the hedge or ditch relief
associated with lighting from above; see Figure 4).
Therefore, in (1) a hit was recorded if the response
was “hedge” and the image contained the original
visual texture of a hedge. In (2) a hit was recorded if
the response was “hedge” and the image contained
convex binocular disparities consistent with a hedge.
Importantly, in (3) a hit was recorded if the response
was “hedge” and the stimulus was oriented such that the
lighting produced a highlight above the image centerline
and a shadow below the image centerline (because of
the southerly lighting direction, this was the case for
correctly oriented ditches and spatially inverted hedges).
Note that in (2) and (3) the ground truth for hedge (and
ditch) no longer relates to whether the image was a
photograph of a hedge or a ditch, but to binocular and
monocular cues for 3D relief, respectively. In addition,
note that for all three analyses, the status of the two
factors excluded from the definition of ground truth
were irrelevant for determining hits, misses, false alarms,
and correct rejections.

We performed our analysis according to each of our
three assumptions about ground truth to reveal the
ground truths assumed by our observers in their task.

Bias
The analysis of bias was common for all three

assumptions of ground truth since it deals only with
the two response categories (“hedge” and “ditch”). The
results are shown in Figure 10 for each observer where
the bias measure (expressed as percentage [%]) is given
by the number of “ditch” responses subtracted from the
number of “hedge” responses and normalized by the
total number of stimuli. For both types of experimental
block, all observers were biased toward hedges, in some

Figure 10. Individual biases (100 × (n “hedge” responses - n
“ditch” responses)/(n “hedge” responses + n “ditch”
responses)). All observers made more “hedge” responses than
“ditch” responses. Different shading shows the analysis split by
the experimental blocking of trials (into stimuli containing
greyscale images of hedges and ditches). Observers are rank
ordered by bias (averaged across blocks) within group (left to
right). Error bars show 95% confidence intervals
(Clopper-Pearson method).

cases, quite strongly (e.g., a bias of 30% indicates a 65:35
split for hedges:ditches), consistent with the well-known
convexity bias (Adams & Elder, 2014; Champion &
Adams, 2007; Langer & Bülthoff, 2001; Perrett &
Harries, 1988)4. From our bias measures alone, we
cannot determine the relative proportions of response
bias and perceptual bias, but a 3D relief matching task
(Liu & Todd, 2004) points to a perceptual origin for
the convexity bias and the consistency of our results
with this suggests that perceptual bias was involved.
We consider this no further (bias has no bearing on
our hypotheses), but we note that the presence of bias
demands a bias-free measure of sensitivity (d′), rather
than percent-correct.

Initial observations of d′ analysis
Figure 11 shows sensitivity (d′) for each observer

where the ground truth was set by (a) the greyscale
image content, (b) the sign of binocular disparity, and
(c) an assumption of lighting from above (all prior to
the addition of noise). In (b) and (c), the consistency of
signal sensitivity across image class was typically high
(not shown) and the results were collapsed across block
type. In (a), the results were necessarily collapsed across
block type to determine d′; see the next subsection
for details. Our first observation is that sensitivity
measures varied with the assumption about ground

Downloaded from m.iovs.org on 04/26/2024



Journal of Vision (2024) 24(4):11, 1–28 Skog et al. 15

Figure 11. Individual sensitivities (d′) to: (A) original image, (B)
disparity profiles, and (C) lighting from above. Observers are
rank ordered within group (left to right) according to their
sensitivity in each plot. Error bars show 95% confidence
intervals (Macmillan & Creelman, 2004).

truth, with the grayscale image content (a) being the
least valuable to observers in general. Novices (red)
systematically outperformed experts (dark grey) in
this respect, but with sensitivities so close to zero we
are reluctant to consider this further. (See also the
next subsection). The higher sensitivity of Novice 6 is
notable, although it poses something of a puzzle. This
participant is generally an outlier, having the strongest
bias overall (see Figure 10)—which might go some
way to explaining the absence of structure in their CIs
(see Figure 5)—but little or no sensitivity to the other
factors for ground truth more commonly used by the
other participants (see Figures 11b, 11c). We consider
this observer further in the next subsection.

Blocking and an assumption about observer stationarity:
Not a serious concern

A common assumption in visual psychophysics is
that the observer is stationary—that their sensitivity
does not vary over the experimental period. In
contrast detection, this is a reasonable assumption
because empirical estimates show that non-stationarity
across typical experimental blocks is similarly low in
magnitude to the variability of within-block threshold
estimates from undersampling (Wallis, Baker, Meese,
& Georgeson, 2013). Our calculations of d′ involved
collapsing data over all blocks of trials. When the
ground truth was derived from disparity or lighting
direction, trials were interleaved within blocks, and our
assumption of stationarity is fairly safe. However, our
trials were blocked for greyscale images of hedges and
ditches, so might our d′ analysis (see Figure 11a) for this
(ultimately, least interesting) situation be undermined
by a switching of strategy (a non-stationarity) between
blocks, perhaps prompted by a confounding cue (e.g.,
the striations in the first and third rows of Figure 1)?
We think this is unlikely to be a serious problem for the
following reasons.

First, none of our observers expressed knowledge of
the blocking across trials.

Second, the combination of (i) our low signal-to-
noise ratios and the relatively small size of the target
features, compared to their surrounds and (ii) the a
priori unlikeliness of this blocking arrangement given
that participants were always asked to judge between
hedge and ditch in each block, makes this seem an
unlikely strategy.

Third, if responses were systematically biased across
blocks, this would translate to high magnitudes of
d′ (the sign depending on whether the observer’s
assumption about block identity was correct or
incorrect). But for the stimulus factor in question, these
were typically close to zero (see Figure 11a).

Fourth, even if such a strategy played a minor role,
perhaps unwittingly, we would expect to see bias of
opposite sign across blocks, but Figure 10 shows this
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did not happen. On the other hand, a combination of
(i) an overall response bias toward hedges and (ii) a
switching of tendency across blocks, would result in
systematically greater bias for the hedge blocks than for
the ditch blocks. There is little or no evidence for this
asymmetry across blocks in the expert group, but a hint
of it for the novices (see Figure 10); we consider the
strongest individual cases, that is Novice 6 and Expert
4, below. Where present, these asymmetries could be
due to a confounding bias or to genuine sensitivity; our
data cannot guide us on the matter. However, since
most of the differences are small, it is unlikely that our
d′ analysis for the factor in question (see Figure 11a)
is substantially undermined. Nonetheless, there is a
possibility that a minor non-stationarity has amplified
our estimates of d′ for the novices for greyscale image
information.

In contrast to the concerns above, another possibility
is that a tacit expectation of an even distribution of
hedge and ditch greyscale images across each block
biased participants away from that factor by splitting
their responses evenly across the two categories. The
substantially non-zero biases in Figure 10 indicate
that if this strategy were at play, it was not completely
successful, but we cannot rule out an effect, in which
case we might have underestimated d′ for grey-scale
image information (see Figure 11a). However, this
image factor receives little further attention from us,
our emphasis being on the other two factors (disparity
and lighting direction) when considering the d′ results,
and these are substantially immune from the nuance of
non-stationarity owing to the interleaving of conditions
within blocks.

Finally, we return to the two observers in Figure 10
who showed a strong difference in bias across the
two block types, beginning with Novice 6. The
pattern for this observer is to be expected if there
is a tendency to correctly discriminate the grey-level
profiles of hedges and ditches, but the diffuse
luminance CI for this observer (see Figure 5) does not
support this interpretation (i.e., they were not using
a luminance-based template), leaving a non-signal
related bias across blocks a distinct possibility and
raising doubts about our estimate of the greyscale d′
for this observer (see Figure 11a). Expert 4 is a little
different, since the direction of their asymmetry is
opposite to that of Novice 6: superimposed on the
overall bias to hedges (shared by all participants)
they systematically made the wrong response across
blocks (in Figure 10, the “hedge” bias is less for the
hedge blocks than for the ditch blocks) leading to their
negative d′ in Figure 11a. For this observer, the CIs
in Figure 5 are both quite distinct. Furthermore, this
observer also has negative d′ for lighting direction (see
Figure 11c) of a similar magnitude. Since it is difficult to
attribute this to bias (owing to the signal interleaving),
we suspect that this observer used a genuinely inverted

Figure 12. Relation between the amplitude of the disparity
classification images (see Figures 5 and 6b) and sensitivity (d′)
for classifying stimuli as a hedge or a ditch according to
whether the landscape feature was presented with crossed or
uncrossed disparity (see Figure 11b). Individual participants are
numbered (nominally) within the groups.

detection strategy. We return to Expert 4 in the General
Discussion.

Sensitivity to disparity profiles
Figure 11b reveals a clear difference across groups

for sensitivity to disparity profiles. The average expert
sensitivity was d′ = 0.264 for the three hedge images
and d′ = 0.277 for the three ditch images (not shown).
Overall, novices were less sensitive than experts for both
hedges (d′ = 0.046) and ditches (d′ = 0.051; not shown),
and within each ranked pair of observers across groups,
the expert always had a greater sensitivity to disparity
than did the novice (H1: t(10) = 3.51, p = 0.003;
one-tailed). We also note (i) that the similar accuracies
for the hedge and ditch images within group confirms
that the stereoscopic profiles of the two image classes
were perceived equally well, and (ii) that the generally
low performance levels indicate that the disparity noise
was an effective mask. (For an unbiased observer, a d′
of 0.3 corresponds with 56% correct in a single interval
yes/no task.)

Figure 12 shows that across observers, d′ sensitivity
for disparity correlated strongly with the amplitude
of the disparity CIs (A from the Gaussian fits to the
individual cross-sections in Figure 6b; Pearson’s r2 =
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0.919, p < 0.001). This reaffirms our observations that
overall, experts had higher scores for both measures
compared to novices (H1). This was to be expected
because a high amplitude in a CI (in this case, disparity)
indicates a high global sensitivity for the relevant
parameter which is therefore identified (detected) more
reliably. On the other hand, d′ for disparity did not
correlate with TNO thresholds (see Table 1; r2 = 0.01,
p = 0.755) even when Expert 5 was removed as a TNO
outlier (r2 = 0.14, p = 0.259). This is reminiscent of our
earlier (and presumably related) observation that TNO
thresholds did not explain group differences in disparity
CIs.

Sensitivity to lighting from above
Figure 11c shows sensitivities (d′) to lighting

direction, where values greater than and less than
zero indicate perceptual assumptions for lighting
from above and below, respectively. This shows that:
(1) novices were generally more prone to directional
biases (were more distant from zero) than experts, and
(2) novices had stronger biases toward lighting from
above than did experts, some of whom were biased
toward lighting from below (H2: t(10) = −1.92, p =
0.042; one-tailed). In fact, within each ranked pair of
observers across groups, the novice always had a greater
sensitivity to lighting from above than did the expert.
This supports our hypothesis that expert experience
with OS images lit from below the line of sight would
diminish the conventional assumption for lighting from
above (H2).

Finally, we also note from Figure 11 that across the
three different assumptions for ground truth (a, b, and
c), the greatest sensitivities were for lighting direction
(see Figure 11c), and this was for the novices. We return
to this point in the General Discussion.

Interpreting luminance CIs and individual
differences

The differences between groups for the luminance
CIs was less than for the disparity CIs (see Figure 5),
but several comparisons are worthy of note. First,
novices produced larger amplitudes (A) than experts
(right of Tables 2 and 3; red and black curves
in Figures 8b and 8d; see Figure 9). We made no a
priori prediction for this result, but it is consistent with
the notion the two groups might prioritize information
differently. However, we also note that experts had
greater spreads (σ ) in the horizontal direction than did
novices (see Table 2). This shows that experts sampled
luminance over a greater spatial range of the landscape
feature despite giving it lower priority. The group
level results from the luminance CIs show that this

cue was used by both novices and experts in the task
(see Figures 5, 7).

We predicted that patterns in the luminance CIs
would relate to lighting direction biases and reveal
group differences (H2). The average luminance CIs
for both groups (see Figure 8b) show asymmetries, as
revealed by the positional offset of the peak (P) and
relative phase (ϕ) (see Table 3), consistent with lighting
from above. These effects were larger for the novices
than the experts (see Table 3). For the expert group,
the peak was located much more centrally than for
the novice group (see Figure 8b), suggesting that the
assumed light source was more diffuse for the experts.
However, the luminance CIs were less marked overall
for this group (see Figures 5, 7), with less asymmetry
(smaller relative phase shifts) and (as noted above)
lower amplitude (see Table 3). This suggests that the
expert group was less prone to lighting assumptions
and to lighting and/or luminance cues in general.

The analysis above is for group trends but,
as Figure 7a shows, there were marked individual
differences in amplitudes, lateral peak locations,
and phase asymmetries within both the novice and
expert groups. This suggests individual differences
for assumptions about lighting in terms of both
direction (above/below) and source (punctate/diffuse).
To examine this, we fitted Gabor functions (Equation 3)
to the individual luminance CIs from Figure 7a
(see Figure A2 for the fits). In all cases but one, the
amplitude was positive and the absolute value of
the relative phase shift was less than 0.5π radians,
consistent with a dark is deep strategy. The exception
was Expert 6, for whom the relative phase shift was
−0.88π radians, placing dark and light pixels more
centrally for “hedge” and “ditch” responses, respectively
(see Figure 5, bottom left). We have no explanation
for this participant’s switch in polarity from our
expectations, but we note they were one of only two
experts who detected the cue for lighting from above
(see Figure 11c).

To visualize the individual differences and to show
the relationship between the luminance CIs and the
categorical results, we plotted the d′ sensitivity for
lighting direction (from Figure 11c) against our two
indices of asymmetry: (i) the lateral offset of the
function peak in the vertical cross-sections (P) and
(ii) a metric related to relative phase (ϕ) which tells us
about the asymmetry of the shape of the CI. These are
shown in Figures 13a and 13b, respectively (see figure
caption for details of how the relative phase metric was
derived to accommodate Expert 6). In both cases, the
correlations were good (Pearson’s r2 = 0.537, p = 0.007;
Pearson’s r2 = 0.516, p = 0.009 in Figures 13a, 13b,
respectively). The division across participant groups
(different colored symbols in Figure 13) also helps to
illustrate the lighting bias hypothesis (H2) where we
anticipated that conventional lighting cues would be
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Figure 13. Relationships between sensitivities to lighting from above (see Figure 11c) and peak location offsets (A) and relative phase
(B) in individual luminance classification images. In panel (B), a phase of 0π radians indicates perfect cosine phase symmetry, and
±0.5 π radians is maximally asymmetric sine phase (vertical dashed line). Individual participants are numbered (nominally) within the
groups. In panel (B), Expert 6 was unusual in that |ϕ| > 0.5 π . Since our aim was for this figure to illustrate asymmetry in the CI, the
result for Expert 6 was folded back across −0.5 π . The result is a value of −0.12 π radians under this metric but with opposite sign
(light/dark; not depicted in this figure) compared with other participants.

a more important factor for novices than for experts.
These are most marked at the extremes (red symbols,
top right; black symbols, bottom left). However, there
is marked overlap in the central regions of the plots,
showing that the two groups do not delineate as
strongly on this measure (see also Figure 5) as they did
on disparity (see Figure 12). We highlight some of the
details below.

Observers with the strongest perceptual biases
for lighting from above (e.g., Novices 1, 3, and 5;
see Figure 11c) also had an asymmetric CI with
a negative side-lobe “south” of the positive peak
(see Figures 5, 7a, 13b). This suggests that a shadow was
inferred “south” in hedge features, and/or a highlight
“south” in ditch features, consistent with a punctate
lighting rule. The opposite inferences of highlights and
shadows is seen for observers with a bias for lighting
from below (e.g., Experts 2 and 4; see Figures 5, 7a, 13),
but less strongly, presumably due to their weaker
biases (see Figure 11c). The observers with centralized
luminance peaks (e.g., Expert 3 and Novices 2 and 4;
see Figures 5, 7a) also showed weaker lighting direction
biases (see Figures 11c, 13). This is consistent with a
conjunction of (i) diffuse lighting and (ii) “dark is deep”
identification rules, where lighter and darker textures
prompt “hedge” and “ditch” responses, respectively.

In summary, lighting direction biases are implied by
d′ sensitivities to lighting from above (see Figure 11c),
and peak offsets and asymmetries in the luminance CIs
(see Figures 8b, 13). Novices showed a greater tendency
for lighting from above, and lighting biases for experts
tended to be diminished by comparison or switched to
lighting from below. Novices and experts thus differ in
their tacit assumptions about lighting and the influences
these have on their luminance CIs though overlap
between the two groups was marked (see Figure 13).

General discussion

Using a novel CI technique involving dual forms of
external noise applied to 3D images, we investigated
two hypotheses (see Introduction) about the influence
of expertise in photogrammetry on the perception of
3D relief. We found clear differences in the perceptual
templates used by expert and novice observers when
interpreting hedge- and ditch-like features in aerial
scenes. Our results showed that experts made better use
of binocular disparity cues than did novices. Experts
also prioritized disparity over luminance, whereas
novices prioritized luminance cues over disparity (H1)
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and had a larger group amplitude in their luminance
CI than the experts. Sensitivity to stereoscopic profiles
was greater for experts than novices, but this did not
relate to stereoacuity. There were individual differences
among observers in the interpretation of lighting
direction cues, with experts less likely to adopt the
conventional prior for lighting from above (H2). We
attribute this last result to photogrammetric experience
with counter-conventional lighting conditions for the
experts.

The novelty of our CIs and our study

To advance what can be achieved in CI studies,
we introduced two novel features to CI stimulus
design. First, earlier experiments on disparity used
dense (Neri et al., 1999) or sparse (Gosselin et al.,
2004) random dot stereograms involving stereo pairs
of uniform backgrounds sprinkled with randomly
placed dots. In these stimuli, the differences between
dot positions across eyes derive from signal and noise
(random jitter), and disparity CIs are measured using
methods similar to ours. With this approach, the target
image is discontinuous. This works well for artificial
laboratory-based targets (e.g., a square, a (superstitious)
cross), but less so for real photographic imagery. Our
use of pixelated images with an algorithm for subpixel
disparities overcame this problem, increasing the range
of stimuli that can be explored. Second, previous CI
studies have not considered luminance and disparity
simultaneously (although, see Neri & Levi, 2008 for a
study which jointly considered disparity and motion).
Since our stereoscopic stimuli were derived from
grey-level pixelated images in the first place, it was
simple to add luminance-noise as a second independent
source of perturbation. With this new approach, we
were able to measure pairs of CIs (disparity and
luminance) simultaneously for photographs of natural
scenes. This was of value because it allowed observer
strategy to be investigated across visual cues as well as
across groups (novices and experts).

The shape of the CIs, visual mechanisms, and
visual attention

The luminance CIs and the disparity CIs both
contained distinct positive (white) and negative (black)
regions; typically, a central peak with one or two
negative side-lobes. These profiles are reminiscent of
the receptive field profiles of neurons in the early visual
system which have band-pass tuning characteristics
owing to this opponent spatial structure. Such cells
have been found for both luminance contrast (Hubel &
Wiesel, 1959) and disparity (e.g. Cumming & Parker,

1997) and comparisons have been made between these
and CI profiles (e.g., Neri et al., 1999), the implication
being that the CIs reveal the structure of the underlying
neural mechanism. In fact, the structures of the novice
luminance CIs (for example) are not dissimilar to the
receptive fields of cortical simple cells, although it
might be slightly more spatially extensive for Novice
1 and Novice 5 (see horizontal spreads in Figure 5).
Nonetheless, we draw caution. The CI technique
involves many trials, and there is no reason to suppose
that the same visual neurons are involved in building all
parts of both the positive and negative regions of the
CI on each trial. For example, if an observer adopts the
strategy that hedges (unlike ditches) will produce more
crossed disparity than their surrounding environment,
then it would be reasonable to treat uncrossed disparity
either above or below the target region as evidence for
such an arrangement. On this basis, local patchwise
analyses of crossed and uncrossed disparities alone
might be used to build up the overall picture: the
classification image. It is this more conservative
interpretation of CIs that we adopt: that the structure
of the CI provides information about the observer’s
overall strategy. Nonetheless, for both luminance
and disparity, it is evident that signal contrast is an
important component in the overall classification.

A remarkable feature of our disparity CIs is that the
midpoint of their vertical cross-sections is very close
to zero (i.e., halfway between the top and bottom of
the image). This implies that our subjective attempts to
locate our hedge- and ditch-like stimuli centrally were
successful, since there was no reason to suppose that
the disparity CIs would otherwise be asymmetric. From
this it follows that a general “dark is deep” strategy with
an assumption of diffuse lighting should also produce
a similarly placed luminance CI. In fact, we found
systematic deviations of the midpoint of the luminance
CI for several observers as well as asymmetries in
their shape. We discuss the meaning of this in the next
section but emphasize here that their inconsistency with
the disparity CIs, their variability across observer, and
the asymmetries in their shapes, rule out an explanation
in terms of systematic deviation of feature placement
in the display.

Another notable feature of our CIs was that their
horizontal spread (see Table 3) was not as wide as
the stimulus feature, indicating that some relevant
signal was being ignored. There are several possible
reasons for this. First, it might be that the CIs really do
reveal details of individual mechanisms, and that the
ones in central vision are limited in width. However,
psychophysical experiments on contrast detection
(Meese, 2010; Meese & Summers, 2012), contrast
discrimination (Meese & Summers, 2007), contrast
matching (Meese, Baker, & Summers, 2017), contrast
CIs (Baker & Meese, 2014), and size perception (Meese
& Baker, 2023), all show that for appropriate tasks,
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the spatial integration of luminance contrast extends
well beyond typical receptive field size in the primary
visual cortex. Another possibility is that the visual
system’s general loss of sensitivity and resolution with
eccentricity (e.g., Baldwin, Meese, & Baker, 2012) means
that more eccentric image regions were of less value
to the observer than central ones. One way to address
this in the future is to use stimuli that compensate for
the eccentric decline (e.g., Baldwin & Meese, 2015).
A third possibility is that the constraints relate to the
observer’s attention window which has been referred
to as a spotlight (Posner, 1980) or Gaussian gradient
(Downing & Pinker, 1985). Perhaps the high task
demands here were such that observers shrunk down the
size of their attentional window to remove distraction.
For example, Castiello and Umiltà (1990) found that
observers can reduce the size of their window of
attention to increase efficiency, and that efficiency
decreases gradually with distance from the attentional
focus. Notably, our experts here prioritized disparity
and this is where the highest CI amplitude was found,
suggesting that focusing of attention is enhanced
by experience. Bosten et al. (2015) also concluded
that visual attention was an important factor among
unpracticed participants in tests of stereoacuity. Finally,
we also note that for our expert group, the luminance
CI had a broader horizontal spread than the disparity
CI. This is consistent with the idea that the cue of lower
priority received less focused attention.

Novices and experts

Our OS experts had many hours experience with
aerial disparity image pairs. We found that (i) they
made better use of disparity cues than novices (as
expected) and (ii) they prioritized these over “dark is
deep” luminance cues. Less expected was that the novice
group would have a greater luminance CI amplitude
than the expert group. Furthermore, the novice’s d′
sensitivity for the (implicit) detection of lighting from
above was greater for this cue/group combination than
any other. This is striking for two reasons. First, from
debriefing, it was clear that none of our observers was
aware of using the lighting direction cue, although
several identified the value of a more general “dark is
deep” rule. Second, although lighting direction can be
a powerful cue in principle (see Figure 4), we suspect
it was rather less important for our clean hedge and
ditch stimuli. For example, consider the image content
in Figure 14 (try to ignore labels in the first instance)
and decide whether each item is a hedge or a ditch.
Then, for the top row, decide which is more ditch-like,
and for the bottom row, which is more hedge-like. We
consider this further below.

Recall that the OS photographs were taken with
lighting from the “south”—the bottom of the image.

Figure 14. Examples of a ditch (top row) and a hedge (bottom
row) taken from Figure 1 (right column) and inverted (left
column) to compare the influence of lighting direction on the
perception of 3D relief. © Crown copyright and database rights
2024 OS, used with permission.

This means that the “inverted” images on the left
of Figure 14 are consistent with lighting from above the
line of sight, which we refer to as lighting from above.
Our impression of these images is that the inversions do
not have large perceptual effects. For example, perhaps
the hedge on the bottom left has a more robust 3D
appearance than the one on the right but the effects are
subtle and for us, the one on the right does not flip in
3D in the way it does for the honeycomb (see Figure 4).
Nonetheless, this was the tendency in the experiment
(averaged across all six image pairs), particularly for
novices, suggesting that for our CI task, where images
were heavily embedded in noise, visual mechanisms
were being tapped at a different level from what is
readily seen in casual inspection of noiseless images.
This observation might raise a question about the
validity of the whole approach: real world decisions
are usually based on clear images; heavy levels of noise
are rare, so doesn’t an experiment like ours tell us
more about the perception of noisy images than the
clean ones we are interested in? This criticism is readily
leveled where the signal-to-noise ratio is sufficiently
high for the target image to be readily seen beneath
the noise and where judgments are made on some
aspect of image content; in those cases, the perceptual
decisions are inevitably based on a blend of the signal
and noise, and we learn about the perception of noisy
images. In the study here, the target image was barely
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evident, if at all (see Figure 3), as demonstrated by
the generally low d′ sensitivities. With this approach
(as with the superstitious method, where the stimulus
is not presented), the CI tells us about the perceptual
strategies and/or expectations the observer brings to
the task, and this involves a characterization of the
features being detected. Nonetheless, we cannot rule
out the possibility that these processes differ those
in the absence of external visual noise. This point is
an issue for any psychophysical study where targets
are embedded in external noise; it is a difficult one to
address and remains a challenge for future research.

Notwithstanding the above, we have learned that
the strategies for experts and novices are different.
Importantly, by implication, this also tells us what
experts are learning from their experience with aerial
photography: (1) To prioritize disparity cues over
luminance cues when searching for 3D relief. (2) That
the conventional prior for lighting from above can be
overcome (fully, in 4 out of 6 cases; see Figure 11c)5.
On the first point, previous studies have found learning
effects for luminance CIs in detection of oriented
gratings (Dobres & Seitz, 2010), face and texture
identification (Gold, Sekuler, & Bennett, 2004) and
position discrimination (Kurki & Eckstein, 2014; Li,
Levi, & Klein, 2004), but this is the first time that
expertise has been demonstrated for disparity CIs. On
the second point, this is consistent with other evidence
for the shaping of lighting priors by experience.
Adams et al. (2004) found a shift in the assumed
direction of lighting following haptic training in
which the error in the initial lighting assumption
was demonstrated implicitly to their participants.
However, the authors concluded that the shift in the
assumed direction of lighting would most likely revert
to convention once their participants were re-emersed
in the naturally lit world. We do not know whether
the unusual lighting assumptions found here for the
experts would transfer to the real world, but it does
appear that, for some of them, the training with
counter-conventionally lit aerial images has a long-term
influence on a perceptual task (detecting signal in
noise) that is very different from their training. We are
currently exploring this further. Knowledge of expertise
in remote sensing surveying at the OS is based in large
part on the workplace observation that experience
correlates with better performance in domain-specific
visual tasks. The underlying processes of learning for
aerial images have only been investigated in a small
number of studies (Borders, Dennis, Noesen, & Harel,
2020; Lansdale et al. 2010; Lloyd, Hodgson, & Stokes,
2002; Šikl et al., 2019). Šikl et al. (2019) found that
remote sensing experts were better at recognizing
aerial-view scenes from memory than novices. In
addition, Lansdale et al. (2010) found that experts
outperformed novices in discounting irrelevant yet
salient features. The current study adds to these results

by providing exemplar CIs that help to define the
experienced surveyors as an expert group.

Individual differences and the importance of
lighting from above

Although the d′ sensitivities were low, they were not
zero. In particular, the lighting direction cue was reliably
and unwittingly detected by several observers, feeding
into decisions and, possibly, the asymmetry of their
CIs. This “effect despite belief” (see Debriefing section)
points to a deeply embedded cue within the visual
system, evident in both experts and novices. This makes
it all the more remarkable that some of our experts have
overcome this bias (see previous section). Furthermore,
while our analysis showed differences between groups,
particularly for the disparity cue (amplitude of the
CIs and d′ sensitivity), there was heterogeneity within
groups for all measures, particularly for lighting
from above, pointing to individual differences in the
influence this ecological cue imposes on our task.
The implications of this are worth considering. A
feature of our experimental design was that the sign
of disparity and lighting direction were inconsistent in
about half the trials (and consistent in the remainder).
This means that for observers who detected both cues
conventionally (e.g., Experts 5 and 6) these two cues
would have been in conflict about 50% of the time,
diminishing the performance that would otherwise be
achieved. Note that, in general, on removing the conflict
trials from the analysis, d′ equals the sum of those
measured when each of the disparity and lighting from
above cues were treated as ground truth. For Expert
6, this is quite a benefit, which is to say that in a task
where hedge and ditch images are lit from above and
have consistent disparity, this observer would benefit
from both cue types. Note that this is not specific to
observers who show a bias to lighting from above.
Expert 4, for example, shows evidence for detecting
lighting from below (see Figure 11c). Since the sign of
d′ in Figure 11c depends only on what we deemed to be
the correct direction for lighting, it follows that Expert
4 would also benefit from the combined performance
across cues (the sum of the absolute values of the d′
measures) when hedge and ditch images are lit from
below. Our point is that only when both (i) there is
inconsistency between the observer’s lighting prior
and the lighting direction in the image and (ii) there
is sensitivity to both cue types, that conflict arises.
As noted already, the greatest d′ sensitivities were
found for an assumption of lighting from above for
the novices. It follows that, in a task such as ours, but
where images are presented without conflict, novices
would benefit from lighting from above and would
benefit further on being trained to use binocular
disparity.
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Mechanisms for binocular disparity

We measured stereoacuities using the TNO test
and found that these did not explain the difference
across groups for disparity CI amplitudes. Expert 5
had the lowest TNO measure and the second lowest
CI amplitude among the experts (only Expert 3 was
lower). Nonetheless, Expert 5’s disparity CI was clearly
defined and of greater amplitude than any novice, all of
whom had markedly better stereoacuity than Expert 5.
Furthermore d′ sensitivity for disparity did not correlate
with TNO. In other words, for our sample of observers,
facility in our CI task did not depend on stereoacuity.
But perhaps this is not so surprising. Stereoacuity
concerns the smallest difference that can be detected
across binocular retinal images. This presents a very
different task demand from extracting meaningful
binocular disparities from a sea of noise. A relevant
study here is that of Carrillo, Baldwin, and Hess (2020).
They measured sensitivity for depth perception in
53 adults for random dot stereograms in a disparity
noise-masking paradigm and found no relation between
disparity thresholds and the level of external disparity
noise that could be tolerated. Thus, both their study and
ours suggest that perception of depth from binocular
disparity involves at least two stages: detection of image
differences across the eyes (disparities) and the pooling
of relevant disparity signal against a background of
disparity noise to contribute to the perception of
depth.

Conclusions

Our novel approach to CIs has proved capable in
revealing different processing strategies across visual
cues and visual expertise. This has practical potential
for (i) directing visual training and (ii) investigating the
basic perceptual mechanisms of human early vision. We
expect that our approach could be readily extended to
other domains including: color, motion, and pictorial
gradient cues for depth perception.

Keywords: classification images, visual expertise,
remote sensing, binocular disparity, lighting prior,
photogrammetry, reverse correlation, aerial images
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Footnotes
1In a different landscape classification project involving judgments of
craters and mounds on the moon’s surface, Bugiolacchi et al. (2016)
corrected the orientation of images to ensure the lighting was always from
the top-left (Mamassian & Goutcher, 2001; Sun & Perona, 1998). This
helps observers to reliably resolve convex/concave ambiguities with the
lighting from above prior.
2The fit to Expert 5’s luminance CI was unusual, bringing our estimate
of their amplitude (A) into question. The details and our solution are
outlined in the Appendix. We also note that when Expert 5 was removed
as an anomaly, the conclusion from the ANOVA was unchanged (F(1, 4)
= 13.16, p = 0.022).
3Some readers might be concerned that our stimulus-response possibilities
do not appear to match those in a conventional yes/no detection task.
For example, in a yes/no task, a correct rejection involves saying “no”
when there was no target stimulus. In our experiment, this is equivalent to
saying, “no hedge” (i.e., “ditch”) when there was no hedge—but there was
a ditch. In this respect, our experiment is more analogous to phase-reversal
discrimination for two-component compound gratings (Lawden, 1983)
than it is to simple contrast detection. In the two-alternative forced-choice
(2AFC) version of that experiment (Meese, 1995), the observer chooses
between compound gratings in peaks-add phase and peaks-subtract phase,
and “threshold” is given by the signal level (the contrast of the higher
harmonic) at some criterion level of performance (e.g., 75% correct).
In other words, the nominal null interval contains a stimulus that is in
some sense the opposite of that in the nominal target interval. The 2AFC
experiment just described could also be run as a single-interval yes/no
experiment (where the target is nominally peaks-add, for example) and
with sensitivity derived by calculating d′. That arrangement is precisely
the one we have here. As an aside, for a range of harmonic relationships,
sensitivity for phase-reversal discrimination is twice as good as it is
for simple detection of the harmonic against the fundamental. This
owes to the presence of an opposite and helpful signal in each interval
(Lawden, 1983; Meese, 1995). Although it was of no interest here to
compare sensitivity measures for hedge verses ditch compared to hedge or
ditch alone, it is reasonable to suppose that a similar relationship to the
grating case would apply. In other words, we speculate that our sensitivity
estimates here are higher than if session trials were a mixture of hedge
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(or ditch) stimuli alone and catch trials (i.e., a conventional yes/no target
detection paradigm). This nuance neither undermines nor detracts from
our analyses.
4We also speculate that this bias may be due to the speckled nature of
the luminance noise mimicking the appearance of hedges more so than
ditches. Familiarity with this could also explain the accentuated bias
among experts.
5We have not shown a switch from the conventional lighting bias to
an absence of this bias (or its opposite) within observers, so could
this difference across groups have come about by chance? An estimate
from Schofield et al. (2011) for the proportion of adults that show a
conventional bias to lighting direction (i.e., to lighting from above) is seven
out of nine participants, which gives a probability of p = 0.22 for those
who do not. From this, we estimated that the probability of having four or
more such observers in a sample of six is p = 0.0248, which is statistically
unlikely. This is also a conservative estimate. In a study by Pickard-Jones,
D’Avossa, and Sapir (2020) using the honeycomb stimulus, all 58 children
between the ages of 7 and 11 years showed a bias to lighting from above.
In addition, using shaded bubbles, Sun and Perona (1998) found that 12
adults (evenly split for handedness) all had biases to lighting from above.

References

Abbey, C. K., & Eckstein, M. P. (2002). Classification
image analysis: Estimation and statistical
inference for two-alternative forced-choice
experiments. Journal of Vision, 2(1), 66–78,
https://doi.org/10.1167/2.1.5.

Abbey, C. K., & Eckstein, M. P. (2006). Classification
images for detection, contrast discrimination,
and identification tasks with a common ideal
observer. Journal of Vision, 6(4), 335–355,
https://doi.org/10.1167/6.4.4.

Abbey, C. K., & Eckstein, M. P. (2014). Observer
efficiency in free-localization tasks with correlated
noise. Frontiers in Psychology, 5(MAY), 1–13,
https://doi.org/10.3389/fpsyg.2014.00345.

Abbey, C. K., Lago, M. A., & Eckstein, M.
P. (2021). Comparative observer effects
in 2D and 3D localization tasks. Journal
of Medical Imaging, 8(04), 1–17, https:
//doi.org/10.1117/1.jmi.8.4.041206.

Adams, W. J., & Elder, J. H. (2014). Effects of
specular highlights on perceived surface convexity.
PloS Computational Biology, 10(5), e1003576,
https://doi.org/10.1371/journal.pcbi.1003576.

Adams, W. J., Graf, E. W., & Ernst, M. O. (2004).
Experience can change the “light-from-above”
prior. Nature Neuroscience, 7(10), 1057–1058,
https://doi.org/10.1038/nn1312.

Ahumada, A. J., Jr. (1996). Perceptual classification
images from Vernier acuity masked by
noise. Perception, 25(1_suppl), 2, https:
//doi.org/10.1068/v96l0501.

Baker, D. H., & Meese, T. S. (2014). Measuring
the spatial extent of texture pooling using
reverse correlation. Vision Research, 97, 52–58,
https://doi.org/10.1016/j.visres.2014.02.004.

Baldwin, A. S., & Meese, T. S. (2015). Fourth-root
summation of contrast over area: No end in
sight when spatially inhomogeneous sensitivity is
compensated by a witch’s hat. Journal of Vision,
15(15), 1–12, https://doi.org/10.1167/15.15.4.

Baldwin, A. S., Meese, T. S., & Baker, D. H. (2012).
The attenuation surface for contrast sensitivity
has the form of a witch’s hat within the central
visual field. Journal of Vision, 12(11), 1–17,
https://doi.org/10.1167/12.11.23.

Beard, B. L., & Ahumada, A. J., Jr. (1998). Technique
to extract relevant image features for visual tasks.
Human Vision and Electronic Imaging III, 3299.
79–85, https://doi.org/10.1117/12.320099.

Beard, B. L., & Ahumada, A. J. (1999). Detection in
fixed and random noise in foveal and parafoveal
vision explained by template learning. Journal
of the Optical Society of America. A, Optics,
Image Science, and Vision, 16(3), 755–763,
https://doi.org/10.1364/JOSAA.16.000755.

Bellenkes, A. H., Wickens, C. D., & Kramer, A. F.
(1997). Visual scanning and pilot expertise: The
role of attentional flexibility and mental model
development. Aviation, Space, and Environmental
Medicine, 68(7), 569–579.

Berbaum, K., Bever, T., & Chung, C. S. (1983).
Light source position in the perception of
object shape. Perception, 12(4), 411–416,
https://doi.org/10.1068/p120411.

Borders, J. D., Dennis, B., Noesen, B., & Harel, A.
(2020). Using fMRI to predict training effectiveness
in visual scene analysis. In Augmented Cognition.
Human Cognition and Behavior: 14th International
Conference, AC 2020, Held as Part of the 22nd HCI
International Conference, HCII 2020, Copenhagen,
Denmark, July 19–24, 2020, Proceedings, Part II 22
(pp. 14–26). New York, NY: Springer International
Publishing.

Bosten, J. M., Goodbourn, P. T., Lawrance-Owen,
A. J., Bargary, G., Hogg, R. E., & Mollon, J.
D. (2015). A population study of binocular
function. Vision Research, 110(Part A), 34–50,
https://doi.org/10.1016/j.visres.2015.02.017.

Brewster, D. (1826). On the optical illusion of the
conversion of cameos into intaglios, and intaglios
into cameos, with and account of other analogous
phenomena. Edinburgh Journal of Science, 4,
99–108.

Bugiolacchi, R., Bamford, S., Tar, P., Thacker, N.,
Crawford, I. A., Joy, K. H., . . . Lintott, C. (2016).
The Moon Zoo citizen science project: Preliminary
results for the Apollo 17 landing site. Icarus, 271,
30–48, https://doi.org/10.1016/j.icarus.2016.01.021.

Carrillo, S. A., Baldwin, A. S., & Hess, R. F.
(2020). Factors limiting sensitivity to binocular

Downloaded from m.iovs.org on 04/26/2024

https://doi.org/10.1167/2.1.5
https://doi.org/10.1167/6.4.4
https://doi.org/10.3389/fpsyg.2014.00345
https://doi.org/10.1117/1.jmi.8.4.041206
https://doi.org/10.1371/journal.pcbi.1003576
https://doi.org/10.1038/nn1312
https://doi.org/10.1068/v96l0501
https://doi.org/10.1016/j.visres.2014.02.004
https://doi.org/10.1167/15.15.4
https://doi.org/10.1167/12.11.23
https://doi.org/10.1117/12.320099
https://doi.org/10.1364/JOSAA.16.000755
https://doi.org/10.1068/p120411
https://doi.org/10.1016/j.visres.2015.02.017
https://doi.org/10.1016/j.icarus.2016.01.021


Journal of Vision (2024) 24(4):11, 1–28 Skog et al. 24

disparity in human vision: Evidence from a
noise-masking approach. Journal of Vision, 20(3),
1–14, https://doi.org/10.1167/JOV.20.3.9.

Castiello, U., & Umiltá, C. (1990). Size of the
attentional focus and efficiency of performance.
Acta Psychologia, 73, 195–209, https://doi.org/10.
1016/0001-6918(90)90022-8.

Champion, R. A., & Adams, W. J. (2007). Modification
of the convexity prior but not the light-from-above
prior in visual search with shaded objects. Journal of
Vision, 7(13), 1–10, https://doi.org/10.1167/7.13.10.

Chauvin, A., Worsley, K. J., Schyns, P. G., Arguin, M.,
& Gosselin, F. (2005). Accurate statistical tests for
smooth classification images. Journal of Vision,
5(9), 659–667, https://doi.org/10.1167/5.9.1.

Chen, C. C., & Tyler, C. W. (2015). Shading beats
binocular disparity in depth from luminance
gradients: Evidence against a maximum likelihood
principle for cue combination. PloS One, 10(8),
1–17, https://doi.org/10.1371/journal.pone.013
2658.

Cooper, E. A., & Norcia, A. M. (2014). Perceived
depth in natural images reflects encoding
of low-level luminance statistics. Journal of
Neuroscience, 34(35), 11761–11768, https:
//doi.org/10.1523/JNEUROSCI.1336-14.
2014.

Cumming, B. G., & Parker, A. J. (1997). Responses
of primary visual cortical neurons to binocular
disparity without depth perception. Nature,
389(6648), 280–283, https://doi.org/10.1038/38487.

Dobres, J., & Seitz, A. R. (2010). Perceptual
learning of oriented gratings as revealed by
classification images. Journal of Vision, 10(13),
1–11, https://doi.org/10.1167/10.13.8.

Doorschot, P. C. A., Kappers, A. M. L., & Koenderink,
J. J. (2001). The combined influence of binocular
disparity and shading on pictorial shape.
Perception and Psychophysics, 63(6), 1038–1047,
https://doi.org/10.3758/BF03194522.

Downing, C. J., & Pinker, S. (1985). The spatial
structure of visual attention. In M. I. Posner & O.
S. M. Marin (Eds.), Attention and performance XI:
Mechanisms of attention (pp. 171–187). Hillsdale,
NJ: Erlbaum.

Drew, T., Evans, K., Võ, M. L. H., Jacobson,
F. L., & Wolfe, J. M. (2013). Informatics in
radiology: What can you see in a single glance
and how might this guide visual search in
medical images? Radiographics, 33(1), 263–274,
https://doi.org/10.1148/rg.331125023.

Eckstein, M. P., & Ahumada, A. J. (2002). Classification
images: A tool to analyze visual strategies. Journal
of Vision, 2(1), i, https://doi.org/10.1167/2.1.i.

Egusa, H. (1983). Effects of brightness, hue, and
saturation on perceived depth between adjacent
regions in the visual field. Perception, 12(2),
167–175, https://doi.org/10.1068/p120167.

Evans, K. K., Georgian-Smith, D., Tambouret,
R., Birdwell, R. L., & Wolfe, J. M. (2013).
The gist of the abnormal: Above-chance
medical decision making in the blink of an eye.
Psychonomic Bulletin and Review, 20(6), 1170–1175,
https://doi.org/10.3758/s13423-013-0459-3.

Fox, S. E., & Faulkner-Jones, B. E. (2017). Eye-
tracking in the study of visual expertise:
Methodology and approaches in medicine.
Frontline Learning Research, 5(3 Special Issue),
43–54, https://doi.org/10.14786/flr.v5i3.258.

Garnham, L., & Sloper, J. (2006). Effect of age on
adult stereoacuity as measured by different types of
stereotest. British Journal of Ophthalmology, 90(1),
91–95, https://doi.org/10.1136/bjo.2005.077719.

Gegenfurtner, A., Lehtinen, E., & Säljö, R. (2011).
Expertise differences in the comprehension
of visualizations: A meta-analysis of eye-
tracking research in professional domains.
Educational Psychology Review, 23(4), 523–552,
https://doi.org/10.1007/s10648-011-9174-7.

Georgeson, M. A., Yates, T. A., & Schofield, A. J.
(2009). Depth propagation and surface construction
in 3-D vision. Vision Research, 49(1), 84–95,
https://doi.org/10.1016/j.visres.2008.09.030.

Gold, J. M., Murray, R. F., Bennett, P. J., &
Sekuler, A. B. (2000). Deriving behavioural
receptive fields for visually completed contours.
Current Biology, 10(11), 663–666, https:
//doi.org/10.1016/S0960-9822(00)00523-6.

Gold, J. M., Sekuler, A. B., & Bennett, P. J.
(2004). Characterizing perceptual learning with
external noise. Cognitive Science, 28(2), 167–207,
https://doi.org/10.1016/j.cogsci.2003.10.005.

Gosselin, F., Bacon, B. A., & Mamassian, P. (2004).
Internal surface representations approximated by
reverse correlation. Vision Research, 44(21), 2515–
2520, https://doi.org/10.1016/j.visres.2004.05.016.

Gosselin, F., & Schyns, P. G. (2003). Superstitious
perceptions reveal properties of internal
representations. Psychological Science, 14(5),
505–509, https://doi.org/10.1111/1467-9280.03452.

Green, D. M., & Swets, J. A. (1966). Signal detection
theory and psychophysics (Vol. 1, pp. 1969–2012).
New York, NY: Wiley.

Hartle, B., Irving, E. L., Allison, R. S., Glaholt, M.
G., & Wilcox, L. M. (2022). Shape judgments
in natural scenes: Convexity biases versus
stereopsis. Journal of Vision 22(6), 1–13,
https://doi.org/10.1167/jov.22.8.6.

Downloaded from m.iovs.org on 04/26/2024

https://doi.org/10.1167/JOV.20.3.9
https://doi.org/10.1016/0001-6918(90)90022-8
https://doi.org/10.1167/7.13.10
https://doi.org/10.1167/5.9.1
https://doi.org/10.1371/journal.pone.0132658
https://doi.org/10.1523/JNEUROSCI.1336-14.2014
https://doi.org/10.1038/38487
https://doi.org/10.1167/10.13.8
https://doi.org/10.3758/BF03194522
https://doi.org/10.1148/rg.331125023
https://doi.org/10.1167/2.1.i
https://doi.org/10.1068/p120167
https://doi.org/10.3758/s13423-013-0459-3
https://doi.org/10.14786/flr.v5i3.258
https://doi.org/10.1136/bjo.2005.077719
https://doi.org/10.1007/s10648-011-9174-7
https://doi.org/10.1016/j.visres.2008.09.030
https://doi.org/10.1016/S0960-9822(00)00523-6
https://doi.org/10.1016/j.cogsci.2003.10.005
https://doi.org/10.1016/j.visres.2004.05.016
https://doi.org/10.1111/1467-9280.03452
https://doi.org/10.1167/jov.22.8.6


Journal of Vision (2024) 24(4):11, 1–28 Skog et al. 25

Hibbard, P. B., Goutcher, R., Hornsey, R. L.,
Hunter, D. W., & Scarfe, P. (2023). Luminance
contrast provides metric depth information.
Royal Society Open Science, 10(2), 220567,
https://doi.org/10.1098/rsos.220567.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive
fields of single neurones in the cat’s striate
cortex. The Journal of Physiology, 148(3), 574,
https://doi.org/10.1113%2Fjphysiol.1959.sp006308.

Kasarskis, P., Stehwien, J., Hickox, J., Aretz, A.,
& Wickens, C. (2001). Comparison of expert
and novice scan behaviors during VFR flight.
Proceedings of the 11th International Symposium on
Aviation Psychology (6).

Koenderink, J. J., van Doorn, A. J., Kappers,
A. M. L., te Pas, S. F., & Pont, S. C. (2003).
Illumination direction from texture shading.
Journal of the Optical Society of America. A,
Optics, Image Science, and Vision, 20(6), 987,
https://doi.org/10.1364/josaa.20.000987.

Kontsevich, L. L., & Tyler, C. W. (2004). What makes
Mona Lisa smile? Vision Research, 44(13), 1493–
1498, https://doi.org/10.1016/j.visres.2003.11.027.

Krupinski, E. A. (2010). Current perspectives
in medical image perception. Attention,
Perception, & Psychophysics, 72(5), 1205–1217,
https://doi.org/10.3758/APP.72.5.1205.

Krupinski, E. A., Tillack, A. A., Richter, L.,
Henderson, J. T., Bhattacharyya, A. K.,
Scott, K. M., . . . Weinstein, R. S. (2006).
Eye-movement study and human performance
using telepathology virtual slides. Implications
for medical education and differences with
experience. Human Pathology, 37(12), 1543–1556,
https://doi.org/10.1016/j.humpath.2006.08.024.

Kundel, H. L., & Nodine, C. F. (1975). Interpreting
chest radiographs without visual search.
Radiology, 116(3), 527–532, https://doi.org/10.1148/
116.3.527.

Kurki, I., & Eckstein, M. P. (2014). Template changes
with perceptual learning are driven by feature
informativeness. Journal of Vision, 14(11), 1–18,
https://doi.org/10.1167/14.11.6.

Langer, M. S., & Bülthoff, H. H. (2000). Depth
discrimination from shading under diffuse
lighting. Perception, 29(6), 649–660, https:
//doi.org/10.1068/p3060.

Langer, M. S., & Bülthoff, H. H. (2001). A
prior for global convexity in local shape-
from-shading. Perception, 30(4), 403–410,
https://doi.org/10.1068/p3178.

Langer, M. S., & Zucker, S. W. (1994). Shape-
from-shading on a cloudy day. Journal of
the Optical Society of America. A, Optics,

Image Science, and Vision, 11(2), 467–478,
https://doi.org/10.1364/josaa.11.000467.

Lansdale, M., Underwood, G., & Davies, C. (2010).
Something overlooked? How experts in change
detection use visual saliency. Applied Cognitive
Psychology: The Official Journal of the Society for
Applied Research in Memory and Cognition, 24(2),
213–225, https://doi.org/10.1002/acp.1552.

Lawden, M. C. (1983). An investigation of the ability
of the human visual system to encode spatial phase
relationships. Vision Research, 23(12), 1451–1463,
https://doi.org/10.1016/0042-6989(83)90157-8.

Li, R. W., Levi, D. M., & Klein, S. A. (2004).
Perceptual learning improves efficiency by
re-tuning the decision “template” for position
discrimination. Nature Neuroscience, 7(2), 178–183,
https://doi.org/10.1038/nn1183.

Liu, B., & Todd, J. T. (2004). Perceptual biases
in the interpretation of 3D shape from
shading. Vision Research, 44(18), 2135–2145,
https://doi.org/10.1016/j.visres.2004.03.024.

Lloyd, R., Hodgson, M. E., & Stokes, A. (2002). Visual
categorization with aerial photographs. Annals of
the Association of American Geographers, 92(2),
241–266, https://doi.org/10.1111/1467-8306.00289.

Lovell, P. G., Bloj, M., & Harris, J. M. (2012). Optimal
integration of shading and binocular disparity for
depth perception. Journal of Vision, 12(1), 1–18,
https://doi.org/10.1167/12.1.1.

Macmillan, N. A., & Creelman, C. D. (2004). Detection
theory: A user’s guide. East Sussex, England:
Psychology Press.

Mamassian, P., & Goutcher, R. (2001). Prior knowledge
on the illumination position. Cognition, 81(1), B1,
https://doi.org/10.1016/S0010-0277(01)00116-0.

Meese, T. S. (1995). Phase-reversal discrimination
in one and two dimensions: Performance is
limited by spatial repetition, not spatial frequency
content. Vision Research, 35(15), 2157–2167,
https://doi.org/10.1016/0042-6989(94)00296-7.

Meese, T. S. (2010). Spatially extensive summation of
contrast energy is revealed by contrast detection
of micro-pattern textures. Journal of Vision, 10(8),
1–21, https://doi.org/10.1167/10.8.14.

Meese, T. S., & Baker, D. H. (2023). Object image size is
a fundamental coding dimension in human vision:
New insights and model. Neuroscience, 514, 79–91,
https://doi.org/10.1016/j.neuroscience.2023.01.025.

Meese, T. S., Baker, D. H., & Summers, R. J. (2017).
Perception of global image contrast involves
transparent spatial filtering and the integration
and suppression of local contrasts (Not RMS
contrast). Royal Society Open Science, 4(9), 170285,
https://doi.org/10.1098/rsos.170285.

Downloaded from m.iovs.org on 04/26/2024

https://doi.org/10.1098/rsos.220567
https://doi.org/10.1113102Fjphysiol.1959.sp006308
https://doi.org/10.1364/josaa.20.000987
https://doi.org/10.1016/j.visres.2003.11.027
https://doi.org/10.3758/APP.72.5.1205
https://doi.org/10.1016/j.humpath.2006.08.024
https://doi.org/10.1148/116.3.527
https://doi.org/10.1167/14.11.6
https://doi.org/10.1068/p3060
https://doi.org/10.1068/p3178
https://doi.org/10.1364/josaa.11.000467
https://doi.org/10.1002/acp.1552
https://doi.org/10.1016/0042-6989(83)90157-8
https://doi.org/10.1038/nn1183
https://doi.org/10.1016/j.visres.2004.03.024
https://doi.org/10.1111/1467-8306.00289
https://doi.org/10.1167/12.1.1
https://doi.org/10.1016/S0010-0277(01)00116-0
https://doi.org/10.1016/0042-6989(94)00296-7.
https://doi.org/10.1167/10.8.14
https://doi.org/10.1016/j.neuroscience.2023.01.025
https://doi.org/10.1098/rsos.170285


Journal of Vision (2024) 24(4):11, 1–28 Skog et al. 26

Meese, T. S., & Summers, R. J. (2007). Area
summation in human vision at and above detection
threshold. Proceedings of the Royal Society
B: Biological Sciences, 274(1627), 2891–2900,
https://doi.org/10.1098/rspb.2007.0957.

Meese, T. S., & Summers, R. J. (2012). Theory
and data for area summation of contrast with
and without uncertainty: Evidence for a noisy
energy model. Journal of Vision, 12(11), 1–28,
https://doi.org/10.1167/12.11.9.

Murray, R. F. (2011). Classification images:
A review. Journal of Vision, 11(5), 1–25,
https://doi.org/10.1167/11.5.2.

Neri, P., & Levi, D. M. (2008). Evidence for joint
encoding of motion and disparity in human visual
perception. Journal of Neurophysiology, 100(6),
3117–3133, https://doi.org/10.1152/jn.90271.
2008.

Neri, P., Parker, A. J., & Blakemore, C. (1999).
Probing the human stereoscopic system with
reverse correlation. Nature, 401(6754), 695–698,
https://doi.org/10.1038/44409.

Nodine, C. F., & Krupinski, E. A. (1998).
Perceptual skill, radiology expertise, and
visual test performance with NINA and
WALDO. Academic Radiology, 5(9), 603–612,
https://doi.org/10.1016/S1076-6332(98)80295-X.

O’Shea, R. P., Blackburn, S. G., & Ono, H. (1994).
Contrast as a depth cue. Vision Research, 34(12),
1595–1604, https://doi.org/10.1016/0042-6989(94)
90116-3.

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M.,
Höchenberger, R., Sogo, H., . . . Lindeløv, J. K.
(2019). PsychoPy2: Experiments in behavior made
easy. Behavior Research Methods, 51(1), 195–203,
https://doi.org/10.3758/s13428-018-01193-y

Perrett, D. I., & Harries, M. H. (1988). Characteristic
views and the visual inspection of simple
faceted and smooth objects: ‘Tetrahedra
and potatoes’. Perception, 17(6), 703–720,
https://doi.org/10.1068/p170703.

Pickard-Jones, B., d’Avossa, G., & Sapir, A.
(2020). 3D shape-from-shading relies on
a light source prior that does not change
with age. Vision Research, 177(June), 88–96,
https://doi.org/10.1016/j.visres.2020.09.002.

Pont, S. C., van Doorn, A. J., & Koenderink,
J. J. (2017). Estimating the illumination
direction from three- dimensional texture of
Brownian surfaces. I-Perception, 8(2), 1–18,
https://doi.org/10.1177/2041669517701947.

Posner, M. I. (1980). Orienting of attention. The
Quarterly Journal of Experimental Psychology, 32(1),
3–25, https://doi.org/10.1080/00335558008248231.

Potetz, B., & Lee, T. S. (2003). Statistical correlations
between two-dimensional images and three-
dimensional structures in natural scenes. Journal
of the Optical Society of America. A, Optics,
Image Science, and Vision, 20(7), 1292–1303,
https://doi.org/10.1364/JOSAA.20.001292.

Ramachandran, V. S. (1988). Perception of shape
from shading. Nature, 331(6152), 163–166,
https://doi.org/10.1016/0002-9394(88)90349-2.

Reingold, E. M., Charness, N., Pomplun, M.,
& Stampe, D. M. (2001). Visual span in
expert chess players: Evidence from eye
movements. Psychological science, 12(1), 48–55,
https://doi.org/10.1111/1467-9280.00309.

Reingold, E.M., & Sheridan, H. (2012). Eye movements
and visual expertise in chess and medicine. The
Oxford Handbook of Eye Movements, May
2014, 524–550, https://doi.org/10.1093/oxfordhb/
9780199539789.013.0029.

Rittenhouse, D. (1786). Explanation of an optical
deception. Transactions of the American
Philosophical Society, 2, 37–42.

Schofield, A. J., Rock, P. B., & Georgeson,
M. A. (2011). Sun and sky: Does human
vision assume a mixture of point and diffuse
illumination when interpreting shape-from-
shading? Vision Research, 51(21–22), 2317–2330,
https://doi.org/10.1016/j.visres.2011.09.004.

Schriver, A. T., Morrow, D. G., Wickens, C. D., &
Talleur, D. A. (2008). Expertise differences in
attentional strategies related to pilot decision
making. Human Factors, 50(6), 864–878,
https://doi.org/10.1518/001872008X374974.
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Appendix: Fits to vertical
cross-sections of CIs for individual
participants.

Figure A1 shows best fit Gabor function to the
vertical cross sections of CIs for disparity CIs from
individual observers. Figure A2 shows similar fits
for individual luminance CIs. The fit to Expert 5’s
luminance data is unusual. The Matlab optimization
routine was drawn towards an unusually high Gabor

Figure A1. Vertical cross-sections of disparity classification images fitted with a Gabor function (Equation 3) for each participant.
Gabor parameter values are listed next to each participant’s plot (with 95% confidence intervals shown in parentheses).
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Figure A2. Vertical cross-sections of luminance classification images fitted with a Gabor function for each participant. Details are as
for Figure A1.

amplitude (much greater than the amplitude of the data)
and a long wavelength. This produced a very shallow
sine-wave component to the Gabor function around the
zero-crossing that was amplified to reach the data by
the high Gaussian amplitude. This unusual nuance had
little or no influence on our estimates of relative phase
(in π radians) and peak location, which are each reliable
indicators of asymmetry but posed a problem for our
group statistical analysis of the amplitudes (A) from the
individual fits. To address this, we tried constraining
A, but found the fits were always drawn to the value of

our constraint. We then tried constraining wavelength
(l) but found an interdependence between the value
of our constraint and the estimate of amplitude.
In a second approach (used in the main body of
the report), we calculated the mean ratio between
Gabor amplitude and the maximum and minimum
values in the data for the other five experts and used
this to estimate the Gabor amplitude for Expert 5
from their maximum and minimum values in their
data.
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