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Our perception does not depend exclusively on the
immediate sensory input. It is also influenced by our
internal predictions derived from prior observations and
the temporal regularities of the environment, which can
result in choice history biases. However, it is unclear
how this flexible use of prior information to predict the
future influences perceptual decisions. Prior information
may bias decisions independently of the current sensory
input, or it may modulate the weight of current sensory
input based on its consistency with the expectation. To
address this question, we used a visual decision-making
task and manipulated the transitional probabilities
between successive noisy grating stimuli. Using a
reverse correlation analysis, we evaluated the
contribution of stimulus-independent decision bias and
stimulus-dependent sensitivity modulations to choice
history biases. We found that both effects coexist,
whereby there was increased bias to respond in line
with the predicted orientation alongside modulations in
perceptual sensitivity to favor perceptual information
consistent with the prediction, akin to selective
attention. Furthermore, at the individual differences
level, we investigated the relationship between
autistic-like traits and the adaptation of choice history
biases to the sequential statistics of the environment.
Over two studies, we found no convincing evidence of
reduced adaptation to sequential regularities in
individuals with high autistic-like traits. In sum, we
present robust evidence for both perceptual
confirmation bias and decision bias supporting
adaptation to sequential regularities in the environment.

Introduction

We often make sense of uncertain sensory
information by exploiting the statistical regularities in
our environment. For instance, we can leverage the fact
that our world is reasonably stable over short timescales,
such that the recent past is generally a good predictor
of the present (van Bergen & Jehee, 2019). We can thus
optimize perceptual decisions otherwise based on noisy
input. Attractive choice history biases in perception,
where the final perceptual decision is biased towards
prior decisions, can be thought to arise as the result of
a Bayesian integration process in a stable environment.
Furthermore, it has been shown that observers can
flexibly adapt choice history biases to the environment’s
statistics (Abrahamyan, Silva, Dakin, Carandini, &
Gardner, 2016; Braun, Urai, & Donner, 2018; Glaze,
Kable, & Gold, 2015; Urai, de Gee, Tsetsos, & Donner,
2019), thereby facilitating perceptual decisions in
environments with different temporal regularities (e.g.,
where stimuli tend to repeat or alternate). However, the
processes underlying this adaptation of choice history
biases are largely unknown, and it is further unclear
whether all individuals can adapt their history biases in
the same way. In this study, we aimed to address these
knowledge gaps.

Observers performed a standard perceptual
decision-making task in which they indicated whether
a target grating of varying contrast and embedded in
visual noise was oriented clockwise or counterclockwise
from vertical (45° or −45° from vertical). The
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environment statistics were manipulated by varying the
transitional probabilities between successive stimulus
orientations, which has been previously shown to
induce an adaptation in choice history biases to
approximate the sequential pattern (e.g., Braun et al.,
2018). In an initial neutral environment, the stimulus
orientation was equally likely to repeat or alternate.
In a subsequent repeating environment, the stimulus
orientation repeated with 80% probability.

The expectation induced by the learned sequential
regularity may generate a bias signal, shifting
decisions independent of the current incoming sensory
information (e.g., de Lange, Rahnev, Donner, & Lau,
2013; Shadlen & Newsome, 2001). However, observers
may also become more sensitive to the orientation
information they predict to see, thereby overweighting
sensory input consistent with their prediction, in line
with a process akin to feature-based attention (Urai
et al., 2019), leading to a perceptual confirmation
bias (Talluri, Urai, Tsetsos, Usher, & Donner, 2018).
Here, we evaluated both possibilities, which are not
mutually exclusive, via reverse correlation analyses,
capitalizing on arbitrary fluctuations in orientation
signal in our target-absent noise stimuli (Wyart,
Nobre, & Summerfield, 2012). This allowed us to
quantify behavioral biases independent of the presented
bottom-up sensory signal and the bias specifically
for signals consistent with the predicted stimulus,
which would point to a process akin to perceptual
confirmation bias.

Furthermore, adaptation to a novel environment
is likely to take place over time, yet previous
psychophysical analyses assume the observer is
stationary in time by averaging across multiple trials
to estimate the observer’s history biases. This limits
the insights we can gain on the dynamics of learning
statistical regularities. We therefore complemented the
classical psychophysical analysis with a novel analysis
using PsyTrack, a recently developed framework to
estimate the psychometric parameters, including choice
history biases, at the resolution of a single trial (Roy,
Bak, Akrami, Brody, & Pillow, 2021).

In addition, we evaluated individual differences
in adaptation to sequential regularities. Lieder et al.
(2019) found that participants with autism spectrum
disorders (ASD) exhibited a reduced influence of the
recent stimulus history than neurotypical controls
in a serial discrimination task, weighting recent
information less strongly, which led the authors to
propose that individuals with ASD are “slow adapters.”
This is related to a broader literature which suggests
impairments in the integration of immediate sensory
evidence and long-term statistics (Brock, 2012; Lawson,
Rees, & Friston, 2014; Pellicano & Burr, 2012; Sinha et
al., 2014; Van de Cruys et al., 2014). Altered perceptual
decision-making in ASD, with reduced reliance on
prior choices, may thus stem from a failure to learn

and exploit statistical regularities in the environment.
Following this hypothesis, we predicted that the
magnitude of choice history biases and in particular
their adaptation to new sequential regularities would
correlate negatively with autistic-like traits, as measured
by the Autism Spectrum Quotient (AQ; Baron-Cohen,
Wheelwright, Skinner, Martin, & Clubley, 2001), and
the Glasgow Sensory Questionnaire (GSQ; Robertson
& Simmons, 2013), a scale targeting the sensory issues
characteristic of ASD, which are not captured by the
AQ.

We find that both stimulus-independent bias and
stimulus-dependent sensitivity modulations to choice
history biases coexist, whereby there is increased
bias to respond in line with the predicted orientation
alongside modulations in perceptual sensitivity to
favor information consistent with the prediction.
At the individual differences level, we do not find
convincing evidence of reduced choice history bias
adaptation related to autistic-like traits. An initial
sample of the ends of the AQ distribution in the
general population suggested a potential effect in
participants with particularly high scores, yet we did not
replicate the effect in a sample of high-AQ participants
who additionally self-reported receiving a diagnosis.
Together, the study sheds light on how observers
exploit sequential regularities to facilitate perceptual
decision-making and suggests that the adaptation of
choice history biases is not affected by autistic-like
traits.

Methods

Two online studies were conducted as pre-registered
at https://osf.io/udsyp and https://osf.io/d8kgq
respectively. Any deviations are reported and justified
below.

Participants

Study 1
Participants were recruited from the general

population via Prolific in two stages. Stage 1 consisted
of a screening survey comprising the AQ (Baron-Cohen
et al., 2001) and the GSQ (Robertson & Simmons,
2013) and served to select individuals with high and low
AQ eligible to participate in the second stage. In stage
2, this subset of participants completed the perceptual
decision-making task.

From our pool of 500 participants, who completed
stage 1, we preferentially invited individuals with highest
and lowest AQ scores to complete the second stage, thus
creating two groups evenly distributed across high AQ
scores (AQ > 24) and low AQ scores (AQ < 18). This
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Figure 1. (A) Distribution of the total AQ and GSQ scores and their correlation in our final sample of 120 participants in study 1 and
(B) distribution of the total AQ our final sample of 71 participants in study 2. Shades of green in the background indicate the
categorical classification of AQ scores as neurotypical (AQ < 23, n = 63), broader autism phenotype (22 < AQ < 29, n = 21), medium
autism phenotype AQ (28 < AQ < 35, n = 23), and narrow autism phenotype (AQ > 34, n = 13).

deviated from the pre-registered approach of inviting
all individuals with an AQ score above a prespecified
cut-off and randomly selecting low-AQ participants
due to the unexpected overrepresentation of high-AQ
individuals in our stage 1 sample. Fifty-seven high-AQ
participants (22 female, 33 male, 2 undisclosed, aged
21–69 [Mage = 40.1, SDage = 12.4, MAQ = 31.8,
SDAQ = 5.9]) and 63 low-AQ participants (38 female,
25 male, aged 20–72 [Mage = 43.4, SDage = 11.3,
MAQ = 13.7, SDAQ = 2.6]) completed the perceptual
decision-making task (see Figure 1A).

The sample size was determined by means of a
power analysis as well as practical considerations. The
expected effect size was estimated based on previous
studies investigating bias magnitude in various tasks
either for two clinical groups, as in (Lieder et al.,
2019; Cohen’s d of 0.49), or according to variability
in autistic-like traits in the general population, as in
(Karvelis, Seitz, Lawrie, & Seriès, 2018; Cohen’s d of
0.355) and (Lowe et al., 2018; Cohen’s d of 0.559).
Taking the mean Cohen’s d of 0.468 as our expected
effect size, the projected sample size estimated using
G*Power for a one-tailed correlation with an α = 0.05,
power = 0.8 was 115.

To follow up on the observed pattern in the data, we
conducted a categorical analysis, where participants
were further subdivided into four categories according
to their AQ score, following the definitions of
neurotypical, as well as broader, medium, and narrow
autism phenotype (BAP, MAP and NAP respectively)
proposed by Wheelwright, Auyeung, Allison, &
Baron-Cohen (2010). Cutoff values for the classification
of our sample were determined using the distribution
of AQ scores for this large-scale study consisting of
1582 ASD families and 666 control families. AQ scores
1 SD above the mean AQ (22 < AQ < 29, n = 21) were
classified as BAP, AQ scores 2 SDs above the mean AQ

(28 < AQ < 35, n = 23), as MAP and AQ scores 3 SDs
above the mean AQ (AQ > 34, n = 13), as NAP. Any
AQ score below 1 SD above the mean AQ was classified
as neurotypical (AQ < 23, n = 63). Because this analysis
was not planned and most likely underpowered, we
conducted a replication.

Study 2
Participants were recruited following the same

procedure, whereby we exclusively invited NT
(AQ < 17) and NAP (AQ > 34) individuals to
participate in the second stage of the study and omitted
the GSQ. We additionally prescreened participants,
such that they were only eligible to participate in the
study if they report having received a diagnosis of
ASD either as a child or as an adult (NAP group)
or having not received a diagnosis of ASD either
as a child or as an adult (NT group), to maximize
the chances of recruiting participants from the
extreme ends of the distribution. Thirty-five high-AQ
participants (11 female, 20 male, four undisclosed, aged
21–61 [Mage = 36.71, SDage = 11.41, MAQ = 13.69,
SDAQ = 2.53]) and 36 low-AQ participants (13 female,
23 male, aged 20–70 [Mage = 40.61, SDage = 13.80,
MAQ = 40.63, SDAQ = 3.83]) completed the perceptual
decision-making task (see Figure 1B).

The sample size was determined by means of a power
analysis based on study 1. Taking the smallest effect
size comparing history bias adaptation for low-AQ
versus NAP participants (Cohen’s d of 0.606) as our
expected effect size, the projected sample size estimated
using G*Power for a one-tailed t test with an α = 0.05,
power = 0.8 was 35 participants per group.

Participants were compensated at a rate of £7.5/hour.
Participants reported normal or corrected-to-normal
vision, and were additionally required to report
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Figure 2. (A) Example trial: participants report the orientation of a target grating of varying contrast and embedded in noise which is
tilted clockwise or counterclockwise (45° or −45°) from vertical (0°). Trial-wise and block-wise feedback was provided. (B) The
transitional probability of stimulus orientations was manipulated to create two environments: an initial neutral environment
(repetition probability of 0.5) and a subsequent repeating environment (repetition probability of 0.8).

fluency in English, a minimum of 400 previous
submissions and a 90% approval rate on Prolific. The
study was approved by the local ethics committee
of the University of Sussex (reference number
ER/MD517/10). All participants gave written informed
consent.

Stimuli and procedure

Participants completed a standard two-alternative
forced choice orientation discrimination task with
trial-wise feedback in two environments (see Figure 2).
In the initial neutral environment, the orientation of
the stimulus (a grating embedded in white noise) was
determined independently across trials and equally
likely to be clockwise or counterclockwise, while in the
repeating environment, the orientation of the stimulus
was more likely to repeat across successive trials.

The experiment was implemented using PsychoPy
and hosted on Pavlovia. Participants were first
instructed to complete a card-matching task freely
available on Pavlovia (https://pavlovia.org/Wake/
screenscale) to estimate the monitors’ logical pixel
density and adjust the size of our stimuli accordingly.
Next, they received detailed instructions including a
demonstration trial, 3 slowed-down practice trials, and
a practice block of 80 trials in the neutral environment.
The main task consisted of 12 blocks of 100 trials
each: Six blocks in the neutral environment, where the
repetition probability of the stimulus orientation was
0.5, followed by six blocks in the repeating condition,
where the repetition probability of the stimulus
orientation was 0.8. The order of the environments was
held constant across participants to avoid carryover
effects of biases acquired in the repeating environment
to the neutral environment.

Participants were instructed to focus on a central
fixation cross throughout the trial and indicate if
the grating was tilted clockwise or counterclockwise
from vertical. Each trial consisted of a fixation period
jittered between 800 and 1200 ms, a 200-ms stimulus
presentation, and a response period of up to 2000 ms,
during which participants indicated if the stimulus
was tilted clockwise or counterclockwise by pressing
the “m” or “x” key on the keyboard respectively.
Feedback (the word “Correct” or “Incorrect” in red
or green, respectively) was displayed after each trial
for 500 ms. As additional feedback, participants were
informed of their block-wise accuracy after each
completed block. Missed trials triggered a warning
message indicating that no response had been recorded
and reminding participants to keep responding. An
additional warning was presented after every 20 missed
trials. Participants had the opportunity to take breaks
after the demonstration trials, after the practice block
and after each experimental block (the latter lasting a
maximum of five minutes).

The following exclusion criteria were checked in real
time, such that the experiment terminated automatically
if they were not fulfilled:

1. Minimum performance of 65% accuracy in
practice trials and in the main task (the latter was
recomputed on each trial, after the first 200 trials
had been recorded)

2. Maximum of 60 missed responses (5% of all 1200
trials)

In addition, we ensured the following criterion was
met post-hoc:

3. Minimum performance of 65% accuracy in each of
the two environments (blocks 1–6 and 7–12).
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Images and condition matrices were generated
in MATLAB using custom scripts. Gratings had a
radius of approximately 5° of visual angle on a 40.8
cm wide monitor with a resolution of 1366 × 768
px at a viewing distance of 0.6 m. These were scaled
based on participants’ logical pixel density derived
from the card-matching task and the known monitor
specifications of one of the experimenters to present
a stimulus of approximately 10.6 cm in radius to all
participants. Assuming a viewing distance of 0.6 m,
gratings had a constant spatial frequency of 1 c/° ,
a random phase value between 0 and 1, and were
embedded in noise with contrast of 0.3, smoothed with
a Gaussian kernel with a SD of 0.08 visual degrees. The
Michelson contrast of the target grating comprised six
levels (0, 0.02, 0.04, 0.06, 0.12, and 0.18) and was fully
randomized within each environment, ensuring equal
numbers of presentations (except for the first 12 trials in
the practice block, which were presented at full contrast
for instruction purposes). In trials with 0%-contrast
targets, the correct response was determined randomly
in the neutral environment, whereas in the repeating
environment it followed the sequential regularity and
thus depended stochastically on the previous stimulus.
A combination of easier and more difficult trials is
needed to both establish the regularity of stimulus
sequences and create perceptual uncertainty, which
motivates the reliance on internal predictions during
decision-making.

The serial-order counterbalanced orientation
sequence in the neutral environment was determined
using a specialized function in MATLAB which ensures
that every condition is preceded equally often by
every other condition (Brooks, 2012). The orientation
sequence in the repeating environment was generated by
sequentially sampling from a binomial distribution with
a stimulus repetition probability of 0.8. This process
was iterated over until the empirically determined
repetition probability was within ±0.02 of the target
repetition probability of 0.8.

Probabilistic choice model

The goal of this analysis was to quantify each
participant’s history biases per environment, and
thus confirm the presence of history bias adaptation
to sequential regularities, prior to characterizing it
further. We estimated each participant’s probability
of responding clockwise in a given trial of the
neutral and repeating environment separately using
an established multiple logistic regression model with
lasso regularization (Fründ, Wichmann, & Macke,
2014). The model included regression coefficients for
the current stimulus at trial t (target signal intensity,
here the signed Michelson contrast of the grating), the
history-independent bias to respond clockwise, the

lapse rates (the rate of clockwise and counterclockwise
responses independent of stimulus intensity), and
the stimuli and choices in the previous seven trials.
The choice of temporal horizon (number of previous
stimulus and response regressors) was motivated by the
fact that the autocorrelation of the repeating sequence
approaches zero for lags above 7, and is in line with the
temporal horizon used in previous studies (e.g., Braun
et al., 2018). The regularization parameter λ was set
to 0.001. To ensure that with this regularization we
could accurately recover history biases in the repeating
environment, in which current and previous stimuli
were correlated, we ran a simulation procedure. We first
estimated psychometric parameters (intercept, slope,
lapse rates, and history biases) for each participant in
the uncorrelated, neutral environment. Using these
parameters, we then simulated 100 sets of responses to
the stimulus sequences of the repeating environment of
each participant. Subsequently, we repeated the lasso
regression on these simulated responses. The simulation
confirmed that we could accurately recover the
simulated history biases in the repeating environment
(see Supplementary Figure S1).

The analysis focused on the previous correct choice
regressor in each environment and the adaptation of
the previous correct choice regressor after transitioning
from the neutral to the repeating environment (previous
correct choice regressor in the repeating environment
minus previous correct choice regressor in the neutral
environment). We had predicted that the adaptation
effect would be more pronounced for the stimulus
regressor as opposed to the choice regressor, as the
trial-wise feedback provided participants with the
ground-truth orientation information. We therefore
expected participants to use this to predict the
upcoming stimulus instead of their previous, potentially
incorrect choice. However, we observed that the full
effect is better captured by summing previous stimulus
and previous choice weights, which is mathematically
equivalent to the previous correct choice weight. We
consider this to be the more appropriate measure of
history effects in our data, yet this was not pre-registered
and we thus report the associations with the previous
stimulus and choice regressors in full. As a control
analysis, we also report the correlations of autistic-like
traits with the current stimulus regressor, the intercept
and the lapse rates, as well as the mean accuracy and
reaction time.

Time-resolved probabilistic choice model

Sequential regularities need to be learned by
experience, such that we would expect adaptation to
the repeating environment to not be instantaneous,
but rather to develop over time. We therefore aimed to
quantify time-resolved history biases per environment.
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We estimated the development of each observer’s
choice history biases over time in the neutral and
repeating environment separately using PsyTrack (Roy
et al., 2021). The model of the probability to respond
clockwise included regression coefficients for the
current stimulus at trial t (target signal intensity, here
the z-scored Michelson contrast of the grating), the
history-independent bias to respond clockwise, and the
previous response and previous stimulus regressors in
the previous seven trials, thus matching the temporal
horizon of the time-unresolved analysis. Regressors are
estimated on every trial, with each of these evolving
according to a Gaussian random walk. The standard
deviation σ characterizing the average rate of change
of the weight across trials was initialized at the default
value of 2−5, and the variability on the first trial was set
at the larger value of 25 to allow the data to determine
the starting point.

Given the clear linearity of the curves, the learning
rate metric was based on the intercept and slope of
the linear fit to the individual history weight trajectory
in the repeating environment. We had preregistered a
Bayesian model comparison to determine the optimal
function describing the change in history regressors
over time against each other (specifically, a null model
with no difference in weights across trials, a switch-point
model where there is an abrupt change in weights, a
linear model and a quadratic model). However, this step
was redundant in light of the results.

Reverse correlation analysis

To investigate how choice history affected perceptual
decisions, we utilized the noise-driven fluctuations
in the orientation signal of the 0%-contrast stimuli
in a reverse-correlation analysis. We estimated the
probability of an observer responding clockwise,
together with their stimulus-independent bias
and stimulus-dependent sensitivity to orientation
information fluctuations separately for trials
preceded by a counterclockwise and a clockwise
stimulus in each environment. This allowed us to
compare effects of choice history on both stimulus-
independent decision bias and stimulus-dependent
sensitivity.

The amount of signal energy present in each noise
stimulus was quantified through convolution of
the image with a pool of Gabor filters with tuning
properties comprising all combinations of orientations
between −89° to 90° in steps of 1° and spatial
frequencies ranging from 0.6 to 2.5 c/° in steps of 0.1
c/° ( i.e., the target frequency of 1 ± 0.4 c/°, using
custom MATLAB scripts). To test the effect of the
previous stimulus (and the prediction derived thereof)
on the current trial, the data was then split according
to the environment (neutral or repeating) and the

orientation of the previous stimulus (clockwise or
counterclockwise). Each spatial-frequency bin within
each dataset was fit with a logistic regression model
using custom scripts in R, to estimate the probability
of the observer responding clockwise as P(clockwise) =
� (β0 + β1 · Z[E(S)]). Here � is the logistic function,
β0 is the intercept (bias), β1 scales the relationship
between the orientation energy and the response
(sensitivity), and Z[E(S)] is the orientation energy of
a given orientation and spatial frequency combination,
z-scored per orientation, spatial frequency, participant,
previous stimulus orientation and environment. We
subsequently removed outliers, defined as values outside
1.5 times the interquartile range, calculated in turn
by pooling estimates for all participants, orientation
and spatial frequency combinations contingent on
the previous stimulus (clockwise or counterclockwise)
and the environment (neutral or repeating). Summary
statistics were created by averaging the sensitivity
regressors (β1), corresponding to clockwise orientations
(89° to 1°) and counterclockwise orientations (−89°,
−1°) and all spatial frequencies (0.6 to 1.4 c/°). The bias
regressors (β0) were averaged across all orientations
(−89°, 89°) and all spatial frequencies (0.6 to 1.4
c/°), because the term is stimulus-independent. This
resulted in an average bias β0 per previous stimulus
orientation (clockwise or counterclockwise), and
per environment (neutral or repeating), and an
average sensitivity β1 per orientation energy in the
noise (clockwise or counterclockwise), per previous
stimulus orientation (clockwise or counterclockwise),
and per environment (neutral or repeating) for each
participant.

Deviating from our preregistered analysis, we focused
our reverse-correlation analysis on 0% contrast trials,
in which observers’ responses were purely driven by
internal biases and fluctuations in orientation energy
of the white noise stimuli. This eliminated the need
to account for the influence of the grating signals
on the observers’ responses, allowing for a more
straightforward assessment of our main hypotheses
regarding the sensitivity to noise-driven fluctuations in
orientation signals.

We had additionally preregistered an exploratory
analysis investigating the specificity of the stimulus-
dependent β1 regressor resolved by orientation
and spatial frequency by means of a cluster-based
permutation test in the 2-dimensional space spanned
by orientation and spatial frequency. This was omitted
in light of the broad orientation tuning of the energy
sensitivity profiles (see Figure 5).

Statistical tests

The hypotheses relating to the behavioral effects
of history biases were tested by means of paired t
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tests in the case of the bias term (previous stimulus
orientation clockwise vs previous stimulus orientation
counterclockwise separately in each environment),
and a 2 × 2 repeated-measures analysis of variance
in the case of the sensitivity term (previous stimulus
orientation clockwise vs. previous stimulus orientation
counterclockwise, and clockwise orientation energy
vs. counterclockwise orientation energy, separately
in each environment). In addition, the environment
was included as a factor in a 2 × 2 or a 2 × 2 × 2
repeated-measures analysis of variance, for the bias
term and the sensitivity term, respectively.

The relationship between the measures of choice
history biases across time-resolved, time-unresolved,
and reverse-correlation analyses was assessed using
Pearson’s correlations. To compare the estimates of the
time-resolved and -unresolved models, we averaged the
one-back stimulus and response weights across trials
for each environment and participant.

Individual differences throughout were assessed
by means of Spearman’s rank correlation between
each of the measures and the AQ and GSQ scores.
Group differences between the neurotypical and NAP
samples were tested using Welch’s t tests. Note that,
because this analysis was not planned, we conducted
a replication study specifically recruiting low-AQ
and NAP participants, and using one-sided Welch’s
t tests.

Bayes factors were calculated using JASP with
default parameters. Bayes factors for main and
interaction effects are reported as BFincl and are derived
by comparing the model with the effect of interest vs
the model without the effect of interest, all else being
equal. Deidentified data and analysis code are available
on OSF: https://doi.org/10.17605/OSF.IO/9K2TP.

Results

Observers adapt their history biases to the
statistics of a repeating environment

Participants successfully adapted their history
biases to the repeating environment statistics. This is
evidenced by the clear shift in the psychometric curves
conditioned on the stimulus orientation in the previous
trial in the repeating environment (see Figure 3A).
Our multiple logistic regression analysis confirmed
that participants increased their bias towards the
stimulus orientation of the previous trial in the
repeating versus the neutral environment (Figure 3B,
study 1: t(119) = 9.37, p < 0.001, BF10 = 1.09 ×
1013; study 2: t(70) = 8.33, p < 0.001, BF10 = 1.95
× 109). Along with this adaptation in the previous
stimulus weight, participants also increased their bias
to repeat their previous response (Figure 3B, study

1: t(119) = 9.61, p < 0.001, BF10 = 3.71 × 1013;
study 2: t(70) = 7.34, p < 0.001, BF10 = 3.42 × 107).
The simultaneous increase of previous stimulus- and
choice-weight reflects the participants’ tendency to
repeat their choices after correct trials, and a much
weaker tendency to switch choices after incorrect trials
(Figure 3B). We therefore focused our subsequent
analyses on history biases following correct trials,
computed by summing previous stimulus and choice
weights. Both previous correct and incorrect weights
decay with increasing temporal distance, with t tests
against zero remaining significant for a lag of up to
7 (study 2: 5) trials for the previous correct choice
weight and up to 3 (study 2: 4) trials for the previous
incorrect choice weight (all p < 0.05) in the repeating
environment (see Figure 3C). History bias adaptation
to the repeating sequence provided an advantage in task
performance, driven by an improvement in accuracy
in low-contrast trials, defined here as contrasts below
0.06% (see Figures 3D and 3E). Indeed, the magnitude
of the adaptation of the previous correct choice weight
correlated with accuracy in low-contrast trials in the
repeating environment (study 1: ρs = 0.49, p < 0.001,
r = 0.48 [0.32, 0.60], BF10 = 350428.07; study 2:
ρs = 0.65, p < 0.001, r = 0.67 [0.51, 0.78], BF10 = 9.99
× 107). Importantly, it was not possible to predict the
rewarded response in 0%-contrast trials in the neutral
environment, because these were determined randomly,
leading to obligatory chance-level performance of 50%
accuracy. Conversely, in the repeating environment,
exploiting the transitional structure, which also
applied to 0%-contrast trials, allowed participants
to increase their accuracy above 50% (Figure 3E).
Overall, our results show that participant successfully
adapted their choice history biases to the repeating
temporal regularity, thereby improving their perceptual
decisions.

Adaptation to repeating temporal regularity is
supported by concurrent perceptual
confirmation bias and decision bias

Although observers successfully adapted their history
biases to the sequential regularities of the repeating
environment, it is unclear how these history biases and
their adaptation manifest. We had hypothesized that
observers could exploit their perceptual history in two,
not mutually exclusive ways. First, observers could
offset the accumulated sensory evidence in favor of the
predicted stimulus orientation independently of the
presented signal (stimulus-independent bias). Second,
observers could preferentially accumulate evidence that
is consistent with the predicted stimulus orientation
(stimulus-dependent sensitivity), leading to a perceptual
confirmation bias.
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Figure 3. Adaptation of history biases to the environment statistics: (A) Group-average psychometric curves in the neutral and
repeating environments, each conditioned on the stimulus orientation in the previous trial. Filled circles show the empirical data,
lines the model prediction. (B) Effect of the one-back previous stimulus and previous response on the current response. Blue circles
and yellow triangles indicate the weights for individual observers in neutral and repeating environments respectively, estimated with
multiple logistic regression—each observer’s estimates are connected by a gray line. The larger dark gray circle and triangle show the
group-average weights in the neutral and repeating environments respectively for study 1 and study 2. (C) Previous correct and
incorrect choice weights as a function of lag in the neutral and the repeating environment for study 1 and study 2. Shaded areas
depict the standard error of the mean and asterisks the level of significance (*p < 0.05, **p < 0.01, ***p < 0.001). Asterisks in
parentheses refer to study 2, where the level of significance does not coincide. (D) Mean accuracy per block for study 1 and study 2,
and (E) per contrast and environment (blocks 1–6 in the neutral environment in blue, blocks 7–12 in the repeating environment in
brown, dashed line shows chance performance) for study 1 and study 2. Error bars depict the standard error of the mean.

These effects (stimulus-independent bias and
stimulus-dependent sensitivity to predicted and
unpredicted orientations) were estimated based on
responses to the 0%-contrast trials (i.e., trials that
did not contain a target grating and consisted solely
of random fluctuations in orientation information in
the noise stimulus). The orientation information in
the noise stimulus was quantified by convolving the

image with a pool of Gabor filters tuned to a range
of spatial frequency and orientation combinations.
Based on these orientation energy profiles derived from
the noise stimuli, we predicted the probability of an
observer responding clockwise on a given trial using
logistic regression. This allowed us to quantify both the
sensitivity to noise-driven orientation energy, as well as
overall biases to respond clockwise or counterclockwise.
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Figure 4. Schematic of the reverse-correlation analysis: Noise-driven fluctuations in the orientation information in 0%-contrast trials
(left) are quantified in the orientation energy profile of the image (center), computed by convolving the image with a pool of Gabor
filters tuned to all combinations of orientation between −89° to 90° in steps of 1° and spatial frequency between 0.6 to 1.4 c/° in
steps of 0.1 c/° (i.e., the target frequency of 1 ± 0.4 c/°). Using the orientation energy profiles of all 0%-contrast target stimuli to
predict participants’ probability to respond clockwise vs counterclockwise allowed us to estimate a stimulus-independent bias and
their sensitivity to the noise-driven orientation energy (top and bottom right, respectively ; data generated by averaging across all
trials in the neutral environment and all participants). History bias adaptation to the environment statistics can be assessed by
conditioning this model on the target orientation in the previous trial (i.e., by splitting the data according to previous stimulus
orientation and environment). Shaded areas in the background indicate the categorical distinction between orientation information
in the noise which is clockwise from vertical or 0° (positive values, in blue) and counterclockwise from vertical (negative values, in
red), yet note that the sensitivity was estimated continuously in steps of 1°.

By additionally conditioning our data on the previous
stimulus orientation (clockwise vs. counterclockwise),
we were able to compare history effects on bias
and sensitivity (see the method schematic in
Figure 4).

Whereas we had hypothesized that observers
would become either more biased or more sensitive
to the predicted orientation, we found evidence of
both effects taking place concurrently. Observers
had a stimulus-independent repetition bias already
in the neutral environment (study 1: t(118) = 3.43,
p < 0.001, BF10 = 24.73; study 2: t(69) = 4.90,
p < 0.001, BF10 = 2830.78; see Figure 5A), which
was exacerbated in the repeating environment (study
1: t(118) = 20.30, p < 0.001, BF10 = 8.82 × 1036,
study 2: t(67) = 15.67, p < 0.001, BF10 = 9.25 ×
1020; interaction between previous stimulus and
environment— study 1: F(1, 355) = 248.83, p < 0.001,
BFincl = 4.53 × 1058; study 2: F(1, 206) = 161.41,
p < 0.001, BFincl = 9.50 × 1033; see Figure 5B).
Nonetheless, observers were sensitive to the fluctuations
in the noise-driven orientation energy independently
of the presence of sequential regularities (neutral
environment— study 1: F(1, 357) = 61.48, p < 0.001;
BFincl = 2.92 × 1013; study 2: F(1, 210) = 49.88,
p < 0.001; BFincl = 2.58 × 1010; repeating environment:
F(1, 357) = 38.51, p < 0.001, BFincl = 9.64 × 107;

study 2: F(1, 210) = 17.43, p < 0.001; BFincl = 903.17).
Crucially though, only in the repeating environment
is sensitivity modulated by the previous stimulus
(neutral environment— study 1: F(1, 357) = 0.08,
p = 0.77, BFincl = 0.18; study 2: F(1, 210) = 0.55,
p = 0.46; BFincl = 0.28; repeating environment: F(1,
357) = 22.93, p < 0.001, BFincl = 68.26; study 2: F(1,
210) = 16.68, p < 0.001; BFincl = 18.46; interaction
between previous stimulus and environment— study
1: F(1, 833) = 13.16, p < 0.001, BFincl = 6.55;
study 2: F(1, 490) = 10.39, p = 0.001; BFincl = 4.09;
Figure 5D– F). In other words, in the presence of
sequential regularities, the information in line with the
predicted orientation is amplified, whereas information
against the predicted orientation is suppressed. Neither
of these processes (amplification or suppression,
shown as + and −, respectively, in Figure 5C) appears
to conclusively dominate over the other, because
a paired t test comparing sensitivity adaptation
for orientations consistent versus inconsistent with
the prediction is not robustly significant (study 1:
t(119) = −0.90, p = 0.37, BF10 = 0.15; study 2: t(1,
70) = −2.58, p = 0.012; BF10 = 2.77). In summary,
observers exploit the sequential statistics by adjusting
both their stimulus-independent bias and their
sensitivity to predicted and unpredicted sensory
information.
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Figure 5. Stimulus-independent bias in (A) the neutral and (B) the repeating environment, conditioned on the previous stimulus
orientation (clockwise or counterclockwise). (C) Schematic of the expected modulation of stimulus-dependent sensitivity in line with
predicted orientation information after adaptation to a repeating environment. Stimulus-dependent sensitivity to orientation
information in the noise in the neutral and the repeating environment in (D) study 1 and (E) study 2, conditioned on the previous
stimulus orientation. Shaded areas in the background indicate the categorical distinction between orientation information in the
noise which is clockwise from vertical or 0° (positive values, in blue) and counterclockwise from vertical (negative values, in red), yet
note that the sensitivity was estimated continuously in steps of 1°. (F) History effect on stimulus-dependent sensitivity (sensitivity to
clockwise orientation information in the noise for trials where the previous stimulus was clockwise minus sensitivity to clockwise
orientation information in the noise for trials where the previous stimulus was counterclockwise) in the neutral and repeating
environments. Error bars and shaded areas depict the standard error of the mean and asterisks the level of significance (*p < 0.05,
**p < 0.01, ***p < 0.001). Asterisks in parentheses refer to study 2, where the level of significance does not coincide.

Choice history bias adaptation develops over
time

The time-resolved history bias model largely
confirms the results of the time-unresolved model
(time-unresolved and time-resolved estimates averaged
across trials are in high agreement— study 1: previous
correct neutral: r = 0.98, p < 0.001; previous correct
repeating: r = 0.96, p < 0.001; study 2: previous
correct neutral: r = 0.97, p < 0.001; previous correct
repeating: r = 0.96, p < 0.001) and extends the findings
by characterizing the dynamics of the history bias
development (see Figure 6). Averaging across all

participants, the previous correct choice bias remained
relatively constant and close to zero over the course of
the six blocks in the neutral environment. Switching
to the repeating environment leads to an initial
sharp increase followed by a more gradual positive
progression of the trajectory. As the development of
the weights is on average linear, the learning rate can
be indexed by the intercept and the slope of a linear
fit of the previous correct choice weight trajectory in
the repeating environment. Briefly, the time-resolved
analysis reveals rapid as well as gradual adaptation of
choice history weights over the course of exposure to a
new sequential regularity.
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time in an initial neutral and subsequent repeating
environment for all participants. Shaded areas depict the
standard error of the mean.

Similar adaptation for low- and high-AQ
participants

Our previous analyses characterize the effects of
choice history adaptation and additionally reveal

large individual variability. We had hypothesized
that this variability would be related to autistic-like
traits, such that individuals with higher levels of
autistic-like traits would show a reduced ability to
learn and exploit sequential regularities, which would
manifest as a reduced adaptation of history biases after
transitioning to a repeating environment. In study 1,
we found no correlation with the GSQ, a scale which
specifically targets sensory issues characteristic of
ASD, (ρs = −0.08, p = 0.26, r = −0.15 [−0.32, 0.03],
BF10 = 0.43, see Figure 7B), and a trend for reduced
adaptation of the previous correct choice weights
in individuals with higher AQ scores (ρs = −0.10,
p = 0.26, r = −0.16 [−0.33, 0.02], BF10 = 0.54, see
Figure 7A), which appeared driven by the end of the
spectrum. Following up on the pattern in the data,
we divided the sample into subgroups defined in the
literature based on the distribution of the AQ in the
general population (Wheelwright et al., 2010), namely
broader, medium and narrow autism phenotypes (BAP,
MAP, and NAP). Using this categorical approach,
we found a significant reduction in history bias
adaptation in the NAP compared to the neurotypical
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Figure 7. Individual differences in adaptation of the previous correct choice bias to the environment statistics related to autistic-like
traits based on (A) the continuous distribution of AQ scores in study 1, (B) the continuous distribution of GSQ scores in study 1,
(C) a categorical classification based on the AQ as neurotypical (NT; AQ < 23, n = 63), broader autism phenotype (BAP;
22 < AQ < 29, n = 21), medium autism phenotype AQ (MAP; 28<AQ < 35, n = 23), and narrow autism phenotype (NAP; AQ > 34,
n = 13) in study 1, and (D) the categorical classification based on the AQ as NT (AQ < 17, n = 36) and NAP (AQ > 34, n = 35) as well
as self-reported diagnosis, in study 2. Shades of blue in the background in A indicate the categorical classification of AQ scores. Error
bars depict the standard error of the mean and asterisks the level of significance (*p < 0.05, **p < 0.01, ***p < 0.001).
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group (t(41.86) = −3.37, p = 0.002, BF10 = 1.69, see
Figure 7C). However, we did not replicate this group
difference in study 2, in which we specifically recruited
low-AQ and NAP participants who self-reported
having received a diagnosis (t(67.78) = −0.14, p = 0.45,
BF10 = 0.25, see Figure 7D). In short, we did not find
evidence for reduced adaptation of history weights
across the AQ spectrum, even after targeted recruitment
of a NAP group. The remaining analyses of individual
differences likewise did not replicate and can be found
in the supplementary materials.

Discussion

Statistical regularities in the environment allow
us to optimize our perceptual decisions, nudging
our choices towards the more likely option. Here we
used a reverse-correlation analysis to show that this
flexible adaptation to the sequential structure in the
environment is underpinned by both an increase in
stimulus-independent bias to the predicted orientation
and a shift in stimulus-dependent sensitivity to
sensory information which amplifies the influence
of predicted information and suppresses that of
unpredicted information. In parallel, we found
considerable individual differences in the degree
of adaptation to new regularities in sequences of
visual input, yet no convincing evidence for reduced
adaptation in individuals with high levels of autistic-like
traits.

The initial neutral environment provides a baseline
measure of the observer’s inherent choice history
biases. In line with previous studies, we find substantial
idiosyncratic variability in these inherent biases, such
that, although repetition biases predominate, some
participants have alternation biases (Abrahamyan
et al., 2016; Urai et al., 2019). Although seemingly
irrational, inherent history biases in response to fully
randomized stimulus sequences have been documented
extensively and are generally thought to reflect an
individual’s expectation of structure in the environment
and consequent detection of spurious patterns (Glaze
et al., 2015; Yu & Cohen, 2008). However, this
idiosyncratic a priori expectation of the environment
structure is modifiable, as observers (both humans and
rodents) adjust their history biases when exposed to
non-random sequential structure in the environment
(Abrahamyan et al., 2016; Braun et al., 2018; Fritsche
et. al, 2023; Hermoso-Mendizabal et al., 2020). Indeed,
we successfully replicated this history bias adaptation
effect in an online study: on average, participants had a
higher tendency to repeat previous correct choices when
they transitioned from a completely random stimulus
sequence to a sequence in which stimuli were more likely
to repeat. It is noteworthy that overall this suggests

flexibility in adapting to statistical regularities, yet less
so to their absence. Perhaps part of the reason is that
random sequences do not provide a strong expectation
violation— rather there is essentially absence of
evidence for any statistical regularity and most likely
occasional spurious patterns that align with inherent
biases by chance. In line with this, theoretical models for
the dynamics of hidden biases exhibit surprisingly high
probabilities of misidentifying random sequences as
biased (Bialek, 2005). Human observers may therefore
perceive little evidence for changing their intrinsic
choice history biases when responding to random
sequences. Moreover, Abrahamyan et al. (2016) show
that the adaptation of choice history biases is more
pronounced if the presented regularity is in line with
the observers’ inherent biases. This may extend to
adapting to spurious local sequential regularities in
random sequences congruent with existing biases,
thereby maintaining such biases in the face of
randomness.

The underpinnings of such adaptations of choice
history biases to temporal regularities remain unclear.
The expectations induced by trial history could bias
perceptual decisions by means of a shift in decision
criterion independent of the presented sensory
information. Observers could alternatively become
more sensitive to predicted information by means of a
gain modulation mechanism, akin to selective attention
and therefore contingent on the information which
is actually being presented (Urai et al., 2019). These
possibilities are not mutually exclusive, and indeed
here we find evidence of a concurrent adaptation of
stimulus-independent bias and stimulus-dependent
sensitivity to predicted information, whereby the effect
of the stimulus-independent bias predominates. The
increase in sensitivity is consistent with the results
of the reverse-correlation analysis performed by
Wyart et al. (2012). Our analysis expands on these
previous findings by (a) extending the effect to a
manipulation of expectation based on a probabilistic
sequential pattern as opposed to a cue association
and (b) applying a discrimination task instead of
a detection task, which allows for the detection
of changes in sensitivity to unpredicted as well as
predicted information. Likewise, the results dovetail
with alternative analysis strategies, which also find
evidence for sensitivity being modulated by choice
and stimulus history. Murai and Whitney (2021) argue
that the previously seen stimulus shapes the perceptual
template using an image classification approach. Urai
et al. (2019) fit drift-diffusion models on reaction
times and show evidence that accumulation biases as
opposed to starting point biases explain individual
differences in choice repetition behavior. Importantly,
however, these studies investigated “default” history
biases in response to randomized stimulus sequences,
whereas we additionally manipulated temporal input
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regularities and thus focused on adaptive history
biases.

More broadly, the increase in sensitivity for expected
stimuli is consistent with a Bayesian theory of
perception, where perceptual content is biased toward
the expected, as opposed to a cancellation theory, where
perception is biased towards the unexpected because it
is more informative, and would therefore predict higher
sensitivity for unexpected stimuli (Press, Kok, & Yon,
2020). Although the current studies were not designed
to disentangle low- and high-level effects of perceptual
choice history biases (Cicchini, Mikellidou, & Burr,
2017; Cicchini, Benedetto, & Burr, 2021; Fritsche,
Mostert, & de Lange, 2017; Pascucci et al., 2019),
overall the pattern of results for the stimulus-dependent
sensitivity term resembles the classic description of
selective attention, where the signal-to-noise ratio
or tuning of the stimulus channels is modulated to
strengthen the representation of the focus of attention
(e.g., Martínez-Trujillo & Treue, 2004). This possibility
is supported by Wyart et al. (2012), who conducted a
simulation analysis to show that only biased baseline
activity in signal-tuned neurons and not a shift in the
decision criterion can produce sensitivity effects similar
to those we observed in an environment with statistical
regularities. Indeed, this mechanism has been suggested
to underly serial dependence effects (Fischer &Whitney,
2014, also see Pascucci et al. (2023) and Manassi,
Murai, & Whitney (2023) for relevant reviews), and
potentially confirmation bias (Prat-Ortega & Rocha,
2018), a known widespread phenomenon in the domain
of higher cognition and reasoning (Nickerson, 1998).
The phenomenon has recently been highlighted in the
perceptual domain, as observers have been shown to
weight a second set of stimuli more strongly when it was
consistent with their preliminary response than when
it was inconsistent, a classic example of confirmation
bias (Bronfman et al., 2015; Talluri et al., 2018). Here,
in the context of the repeating environment, we found
a similar effect taking place, in the absence of an
explicit instruction to integrate across sensory inputs
of successive trials. The specificity of the sensitivity
modulation to the repeating environment might
suggest a partial dissociation of the decision bias and
sensitivity effects. However, it remains to be conclusively
determined whether bias and sensitivity modulations
are supported by different neural processes, as it is also
possible that a single neural mechanism may result in
distinct behavioral manifestations. To this point, the
slight asymmetry and vertical shifts in Figure 5D may
suggest a potential additional mechanism involving a
shift in tuning channels around 0° depending on prior
expectations. However, we consider it more likely that
this asymmetry arose through measurement noise (e.g.,
spurious correlations between noise-driven energy of
different orientations), as well as the computation of
a moving average over an asymmetric change. Impor-

tantly, there was no evidence of a vertical shift in study
2, using the same experimental paradigm as study 1.

The dynamics of updates to the internal model of
the environment statistics are not well characterized to
date, though previous studies have shown a build-up of
serial dependence over time (Barbosa & Compte, 2020).
Our time-resolved analysis shows that choice history
biases remain relatively constant and close to zero
over the course of the blocks pertaining to the neutral
environment. Switching to the repeating environment
results in an initial sharp increase in choice history
biases, followed by a more gradual positive progression
of the trajectory until the end of the experiment,
quantified respectively as the intercept and the slope of
the linear fit. Because it is clearly impossible to adapt
to a sequential pattern instantaneously, we interpret the
differentiation between intercept and slope to reflect the
distinction between a fast-acting adaptation process,
presumably related to counting transitions over an
immediately preceding trial window of a certain fixed
length, and a slower continuous learning of the global
environment statistics (here of a repeating sequential
structure). However, we would caution against a strict
mapping of these processes to the intercept and slope
as estimated here, given that in our data intercept and
slope are negatively correlated in all environments
(neutral environment— study 1: r = −0.42, p < 0.001;
study 2: r = −0.58, p < 0.001; repeating environment—
study 1: r = −0.48, p < 0.001; study 2: r = −0.36,
p = 0.002; adaptation— study 1: r = −0.59, p < 0.001;
study 2: r = −0.59, p < 0.001). Although it is
plausible that a trade-off between fast and slow
learning processes is taking place, because observers
who learn fast have less room for improvement
and vice versa, the correlation in the neutral
environment in particular suggests some limitations
in the Psytrack algorithm in clearly disambiguating
fast and slow learning processes as intercept and
slope.

In this context, we note that two study design choices
may affect the learning dynamics. First, we provided
participants with access to the “ground truth” through
explicit feedback, which most likely accelerated the
learning process. Second, we chose a fixed-order
experimental design, starting the session with the
neutral environment as opposed to the repeating one,
to obtain a baseline measure of history biases while
avoiding crossover repetition bias effects in the neutral
environment. Because our data and previous literature
(Glaze et al., 2015; Yu & Cohen, 2008) suggest that
observers do not tend to suppress history biases in
response to fully randomized environments, it appears
unlikely our design choice caused cross-over effects
in the repeating environment. However, it is possible
that the initial environment plays a role in setting the
participants’ higher-level expectations of statistical
regularities or their volatility and thus modulates
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the learning dynamics. For example, starting the
experiment directly in a repeating environment with
no prior exposure to a neutral one might potentially
accelerate learning. These would be testable hypotheses
for future studies.

Amore nuanced understanding of choice history bias
adaptation may be crucial to pinpointing the source(s)
of individual differences. Despite the recent popularity
of theories postulating an imbalance in the integration
of prior and sensory information (e.g., Brock, 2012;
Pellicano & Burr, 2012; Sinha et al., 2014), there is
mixed evidence on choice history biases being atypical
in ASD, with previous studies reporting decreased
(Lieder et al., 2019), increased (Feigin, Shalom-Sperber,
Zachor, & Zaidel, 2021) and unaltered choice history
biases (Bosch, Fritsche, Utzerath, Buitelaar, & de
Lange, 2022). Because a broader literature has
suggested that altered perceptual processing may be
due to atypical learning of the environment statistics
(Karvelis et al., 2018; Lawson et al., 2014; Noel, Zhang,
Stocker, & Angelaki, 2021), here we had hypothesized
that the reliance on choice history might be particularly
affected when adapting to a new sequential structure. In
light of the null results and increasing body of mixed
findings, we highlight two points of consideration for
future research. First, it is unclear whether there exists
a general capacity for statistical learning per se which
would cut across cognitive domains, sensory modalities
and contexts (Bogaerts, Siegelman, Christiansen,
& Frost, 2022). Relatedly, it is unclear to what
extent all choice history dependencies in perceptual
decision-making paradigms are driven by the same
underlying mechanisms. Although Urai et al. (2019)
find consistent history-modulations of sensory evidence
accumulation across different tasks and modalities, in
broad agreement with the current results, there is also
evidence for different visual features having different
temporal serial dependence properties (Taubert, Alais,
& Burr, 2016). Furthermore, alternative and not
mutually exclusive mechanisms, such as reinforcement
leaning, have been put forward to explain choice history
biases (Lak et al., 2020). Testing a battery of tasks
or designing paradigms that are more closely related
to the individuals’ phenomenological experience may
prove fruitful. Second, recruitment should address the
concurrent issues of heterogeneous, multidimensional
profiles and a high degree of correlated/comorbid
traits. In the current replication, we validated the
AQ with self-reported diagnostic status, yet an
alternative strategy would be to collect questionnaire
data on potentially correlated traits/diagnoses which
may otherwise confound the results. In this case, a
transdiagnostic dimensional approach may prove more
informative, because various traits (e.g., repetitive
behaviors, sensory issues, or intolerance of uncertainty)
are shared across subclinical profiles and diagnoses and
may be more tightly associated with the mechanisms
under investigation.

In conclusion, we show, first, that adaptation
to sequential regularities in the environment is
underpinned by both an increase in stimulus-
independent decision bias and a shift in stimulus-
dependent sensitivity that favors predicted information,
akin to a perceptual confirmation bias. Second, we
find no convincing evidence for reduced choice history
bias adaptation in individuals with high AQ scores.
Together, our study sheds light on how observers
exploit sequential regularities to facilitate perceptual
decision-making in structured environments.

Keywords: adaptation, choice history bias, perceptual
decision-making, confirmation bias, autism spectrum
disorder
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