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After viewing a picture of an environment, our memory
of it typically extends beyond what was presented, a
phenomenon referred to as boundary extension. But,
sometimes memory errors show the opposite
pattern—boundary contraction—and the relationship
between these phenomena is controversial. We
constructed virtual three-dimensional environments and
created a series of views at different distances, from
object close-ups to wide-angle indoor views, and tested
for memory errors along this object-to-scene
continuum. Boundary extension was evident for
close-scale views and transitioned parametrically to
boundary contraction for far-scale views. However, this
transition point was not tied to a specific position in the
environment (e.g., the point of reachability). Instead, it
tracked with judgments of the best-looking view of the
environment, in both rich-object and low-object
environments. We offer a dynamic-tension account,
where competition between object-based and
scene-based affordances determines whether a view will
extend or contract in memory. This study demonstrates
that boundary extension and boundary contraction are
not two separate phenomena but rather two parts of a
continuum, suggesting a common underlying
mechanism. The transition point between the two is not
fixed but depends on the observer’s judgment of the
best-looking view of the environment. These findings
provide new insights into how we perceive and
remember a view of environment.

Introduction

After viewing a photograph, our memory of it
is not veridical—at times, memory for the scene
generates content that extends beyond the edge of

the original scene, and other times our memory of
the view contracts from the edges. Since originally
reported in Intraub and Richardson (1989), boundary
extension and the related phenomenon of boundary
contraction have been intensely studied to explore the
many factors that contribute to the structure in these
systematic memory errors (for reviews, see Hubbard,
Hutchison, & Courtney, 2010; Intraub, 2010; Intraub,
2012). The dimension of viewing distance is a key
factor underlying these memory errors: As the view
increases in distance, boundary extension is reduced
or even absent (Intraub, 2020; Intraub & Richardson,
1989). Further, sometimes boundary contraction is
found, typically at the condition with the farthest
viewing distance (Bertamini, Jones, Spooner, & Hecht,
2005; Chadwick, Mullally, & Maguire, 2013; Intraub,
Bender, & Mangels, 1992; McDunn, Brown, Hale, &
Siddiqui, 2016), and theories regarding the nature of
boundary contraction and its relationship to boundary
extension are still highly debated (see correspondence
between Bainbridge & Baker, 2020b, and Intraub, 2020;
Gandolfo, Nägele, & Peelen, 2023; Greene & Trivedi,
2022; Hafri, Wadhwa, & Bonner, 2022; Lin, Hafri, &
Bonner, 2022).

Although the influence of viewing distance is evident,
investigations into this factor have often been explored
indirectly (e.g., cropped photographs to a few different
degrees around a central object) or with only three to
five sampled distances in a simulated environment (e.g.,
Bertamini et al., 2005), making it difficult to see a full
pattern of how the memory errors change as a function
of viewing distance. A recent study has provided some
insight by testing memory errors in a large number
of natural scene photographs (Bainbridge & Baker,
2020a). They found a strong correlation between the
subjectively rated viewing distance of an image and
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the direction of the memory errors, with a gradual
change from boundary extension at close-scale views
to boundary contraction at far-scale views. These
transitions between memory errors as a function of
viewing distance raise an intriguing question: What
is the cognitive significance of the point where the
direction of errors changes from boundary extension to
contraction?

On one possible account, the point of memory
transition may be related to whether the depicted space
appears subjectively within reach versus subjectively out
of reach. Previous work has shown that the distinction
between peripersonal and extrapersonal space is very
salient in visuospatial encoding (Cléry, Guipponi,
Wardak, & Hamed, 2015), and neuropsychological
studies have shown separable attentional mechanisms
for near and far space (e.g., double dissociations in
visual hemi-neglect) (Cowey, Small, & Ellis, 1994;
Cowey, Small, & Ellis, 1998; Halligan & Marshall,
1991). Additionally, we have recently shown that the
human visual system is sensitive to the distinction
between views of intermediate-scale reach spaces and
navigable-scale scenes (Josephs & Konkle, 2019; Josephs
& Konkle, 2020). Thus, it is possible that the subjective
reachability of an environment is a behaviorally relevant
signal toward which perceptual representations are
biased.

Another potential account of the transitional
point is that it reflects a canonical view along the
continuum—that is, a view between the extremes that
has some perceptual and representational privilege. This
hypothesis draws on object representation research,
where objects have canonical orientations and visual
sizes at which observers prefer to view them, and these
settings serve as anchoring points in visual memory
experiments (Blanz, Tarr, & Bülthoff, 1999; Konkle
& Oliva, 2007; Konkle & Oliva, 2011; Palmer, 1981).
Thus, it is possible that a similar phenomenon occurs
in scene representation, where environments may be
represented with respect to a canonical view. In fact,
this account is consistent with the memory schema
hypothesis (Intraub & Richardson, 1989; Intraub et
al., 1992), which predicted boundary extension for
closer views and boundary contraction for wide-angle
views with respect to the “prototype” (though note
that Intraub and colleagues have since updated their
theory to a two-process extension–normalization
model; for example, see Intraub et al., 1992; Intraub,
Gottesman, Willey, & Zuk, 1996). Here, we explore
the relationship between the canonical view of a scene
and the transitions between extension and contraction
errors, and revisit the theoretical links between these
phenomena.

Thus, in the current studies we examine these two
possible accounts for the point of transition in memory
errors. To do so, we first built three-dimensional (3D)
virtual environments (e.g., Bertamini et al., 2005;

Park, Josephs, & Konkle, 2022), reflecting a variety of
indoor categories with many different kinds of objects
present, but critically with an identical layout structure
of the walls, with a mid-height surface supporting
a central object. Then, we finely sampled views of
this space along a continuum, from a close-up view
of the central object to a farther scene view of the
entire indoor environment. Our experiments first
mapped the direction of memory errors for views
along this continuum across environments. Then,
critically, we focused on understanding the transition
between extension and contraction errors, relating
it to independent judgments of both the subjective
reachability of the view and the overall goodness of
view.

Memory errors along an
object–scene continuum

In the first experiment, we tested for memory
errors for scene views taken from an object-to-scene
continuum, using the same paradigm as Bainbridge and
Baker (2020a). However, our stimuli were much more
finely sampled along the viewing distance within tightly
controlled virtual environments, allowing us to directly
test how memory errors vary as a function of viewing
distance.

Method

Participants
The Memory Experiment had 377 participants from

Amazon Mechanical Turk (MTurk) (gender and age
information was not collected). All participants gave
informed consent and were compensated with $0.25
for each MTurk Human Intelligence Task (HIT). All
procedures were approved by the Harvard University
Human Subjects Institutional Review Board. The
sample size for each condition of interest was 900
trials (45 per image × 20 environments); a bootstrap
resampling method (Strong & Alvarez, 2019; see
Supplementary Material) showed >95% power to
detect the correlation between position and memory
score, with 40 trials per condition, indicating this design
is extremely high powered.

Stimuli
Computer-generated imagery (CGI) environments

were constructed using the Unity video game engine
(version 2017.3.0; Unity Technologies, San Francisco,
CA). Twenty indoor environments were constructed,
reflecting a variety of semantic categories (e.g., kitchens,
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Figure 1. Stimuli. (A) Example images along the 30-point continuum from two different environments. (B) Schematic of the 3D
environment in Unity with views taken from a camera from the front to the back of the scene. The FOV of the camera and the rotation
angle of the camera were gradually changed to interpolate between an object-centered view of a single central object and a wider
field of view of the entire scene.

bedrooms, laboratories, cafeterias). All rooms had
the same physical dimensions (4 width × 3 height ×
6 depth arbitrary units in Unity), with an extended
horizontal surface along the back wall containing a
centrally positioned object. Each environment was
additionally populated with the kinds of objects
typically encountered in those locations, creating
naturalistic, “object-rich” CGI environments.

Images spanning a continuum of distances from the
central object were captured from each environment,
ranging from a close-up view of the object to a far-scale
view that included the whole room. Images were
generated by systematically varying the location of the
camera (hereafter “Position”) along 30 evenly spaced
points arrayed from the “front” to the “back” of the
room (i.e., from right in front of the central object to
across the room from it) (Figure 1A). Close-up views
were captured with a smaller camera field of view
(FOV), so that only the central object appeared in the
frame, and the FOV increased logarithmically with
each step away from the object. The camera angle was
parallel to the floor plane for far-scale views and was

gradually adjusted downward for closer positions, so
that the central object was always at the center of the
image (Figure 1B). These camera parameters were used
for all 20 environments, yielding 600 unique stimuli (20
environments × 30 positions).

Experimental design
The experiment paradigm followed the procedures

from Bainbridge and Baker (2020a). Each trial started
with a central fixation cross for 1 second. The first
stimulus was presented for 250 ms followed by five
mosaic-scrambled mask images (50 ms each; random
order). The second stimulus was then presented for
1 second. Unbeknownst to participants, the second
stimulus was always identical to the first. After the
second stimulus, participants were asked: “Compared
to the first image, the second image is …,” with two
response options of “closer” or “farther” (Figure 2A).
Participants were instructed to answer within 3 seconds
using a keyboard; if no response was entered within
this time, a warning message was shown before moving
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Figure 2. Memory Experiment paradigm and results. (A) Procedure of the Memory Experiment. The first image was shown for 250 ms
followed by 250 ms of mosaic-scrambled masks. The second image was presented for 1 second, and participants were asked to answer
whether the second image was closer or farther compared to the first image. Unbeknownst to participants, the second image was
always identical to the first one. (B) Memory distortion scores averaged within each position. The error bars represent the standard
error of the mean. The negative score indicates boundary extension, and the positive score indicates boundary contraction. Overall,
there was a smooth transition from boundary extension to contraction as it changed from object-centered to scene-centered images.

to the next trial. Responses (closer/farther) and reaction
times (RTs) were recorded.

Stimuli and masks were presented at 350 × 467
pixels. To create the masks, 15 CGI scenes (not used in
the experiment) were broken down into 25 × 25 mosaic
grids, then reassembled by randomly sampling from
this pool.

The 600 images were divided into sets, such that
a single HIT contained images from each of the 30
positions, selected from 10 of the 20 environments (thus,
each HIT had three images from the same environment,
viewed from different positions). The presentation order
of stimuli within each set was randomly determined for
each HIT. This method of dividing the images into sets
ensured that all participants were exposed to the full
range of views (i.e., Positions 1–30) within a HIT and
allowed for the full stimulus set to be tested with 20
different image sets. Across all HITs and subjects, 45
trials were collected for each image.

Data preprocessing
Trials with reaction times exceeding the allowable

response time window were excluded (3 seconds from
stimulus onset; 2% of trials). HITs were excluded if
(1) their average RT across all trials was faster than 3
SD from the mean over all participants, (2) more than
50% of their trials exceeded the allowable response time
window, or (3) their average RT across all trials was
faster than 2 SD from the mean and they answered more

than 90% of trials with the same response key, leading
to the exclusion of 1.5% of the data. Reaction times
were log transformed prior to trimming to account
for the right skewness of RT distributions (Palmer,
Horowitz, Torralba, & Wolfe, 2011; Ratcliff, 1979).

Calculating memory distortion scores
Responses of “closer” were assigned a score of

−1, and “farther” responses were assigned a score
of +1. These scores were averaged to obtain a
memory distortion score for each image. Memory
distortion scores thus fell in a range between −1 and
1, where negative scores indicate boundary extension
(remembering the initial scene as further away than it
was), positive scores indicate boundary contraction
(remembering the scene closer than it was), and 0
indicates accurate position memory, with no distortion
or bias one way or the other.

Linear mixed-effects logistic regression
Given the hypothesis that the size and direction

of memory distortions would vary continuously as
a factor of viewing distance, we modeled memory
distortion scores as a factor of Position using linear
mixed-effects logistic regression, implemented with
the R code package lme4 (Bates, Ma¨chler, Bolker,
& Walker, 2015). For the dichotomous response
outcomes in this study (closer/farther), a binomial logit
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link function was used in a generalized linear mixed
model. The model included Position as a fixed-effect
term and Environment and Subject as random
intercepts.

To test the significance of the fixed effect of Position,
we compared our model against a null model that
had the same random effects structure but without
the fixed effect, using a chi-square test. If the full
model performed significantly better than the null
model at predicting the data, then Position significantly
contributed to the degree of memory distortion. The p
values were estimated using the code package lmerTest
with Satterthwaite approximation (Kuznetsova,
Brockhoff, & Christensen, 2017).

Transition points estimation
If the direction of the memory distortion varied

continuously as a function of viewing distance to the
central object, then there should be a Position where
there is no distortion or bias (i.e., average memory
distortion score = 0). These transition points were
estimated by finding the Position where the mean
response score changed its sign from negative to
positive. If more than one position crossed the mean
score = 0, the transition point was determined as the
average of those positions. We then estimated the
transition range along the continuum, by computing a
bootstrap 95% confidence interval (CI). Specifically,
the data were resampled with replacement within
each participant, and a transition point was estimated
from the resampled data. These procedures were
repeated 1000 times, resulting in a distribution of
transition points. Then, the 95% CI was obtained
by computing the 0.025 and 0.975 quantiles of this
distribution.1

Transparency and openness
All stimuli and data are available in an Open Science

Foundation repository (https://bit.ly/3o5L8zc). None
of the studies was preregistered.

Results

Is there a consistent transition between extension
and contraction in memory, as would be expected
by Bainbridge and Baker (2020a)? Indeed, we found
systematic evidence that this was the case (Figure 2B).
That is, close-scale views elicited strong boundary
extension effects (i.e., negative memory distortion
scores; 44.8% of images), whereas far-scale views elicited
strong boundary contraction effects (i.e., positive
memory distortion scores; 51% of images), and 4.1% of
the images showed no boundary effect. The magnitude
of the memory bias (i.e., the proportion of responding

one answer to the other) varied continuously between
these extremes (Spearman rank correlation between
position and memory distortion: rho = 0.66, p = 8.76
× 10−77) (Supplementary Figure S3A), confirmed with
mixed-effects logistic regression (estimated odds ratio =
1.03, p < 0.001).

Importantly, there was a relatively consistent
transition range (Position 12.5; transition range
= 11.2–16.2), depicted as a vertical gradient zone
in Figure 2B, which reflects the bootstrap 95% CI.
Given that our stimuli encompass a range of semantic
scene categories with diverse objects, these data indicate
that such systematic transition between memory
extension and contraction likely depends on something
that all scenes had in common: namely, the same virtual
layout of walls, with a back counter or large object
surface and a small central object (see Supplementary
Figure S1 for estimated transition points for each
environment).

Overall, these results confirm previous findings
that the direction and magnitude of memory bias are
related to the viewing distance of an image, and they
demonstrate that there is a systematic point at which the
memory distortion shifts from extension to contraction.
We next explored two possible explanations of this
transition range.

Perceived reachability and
preferred views

Visual inspection of the images falling in the
transition range reveals a set of views where the
structures at the front of the room (i.e., tables or
counters) appear just reachable with the hand. Thus, we
reasoned that it was possible that the transition range
in memory errors is linked to whether the depicted
space is perceived as in or out of reach. We note that
the “reachability” of an image is a fairly subjective
property, linked to both the arm’s length of the viewer
and how they imagine situating themselves in the space
depicted in a two-dimensional image. Thus, we asked
an independent set of participants to rate the subjective
reachability for every view along the continuum.

Another possibility is that the transition region
reflects a canonical view (or prototype) to which the
memory is biased. Here, we took the canonical view
of the environment to be the view that “looks best,”
drawing on paradigms related to canonical orientation
and visual size of objects (Blanz et al., 1999; Konkle
& Oliva, 2007; Konkle & Oliva, 2011; Palmer, 1981),
and related to theories of aesthetic preference (Palmer,
Schloss, & Sammartino, 2013). Specifically, we obtained
“goodness-of-view” judgments for every image from an
independent set of participants.
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Method

Participants
We recruited 213 participants for the reachability

task and 257 participants for the goodness-of-view
task (eight participants completed both tasks; 18
completed both reachability and the above memory
distortion task; 23 completed both goodness-of-view
and the memory distortion tasks). All participants
were recruited on MTurk (gender and age information
was not collected), gave informed consent, and were
compensated with $0.25 per HIT. All procedures
were approved by the Harvard University Human
Subjects Institutional Review Board. The sample
sizes of both tasks were matched to the Memory
Experiment.

Experimental design
In each trial, an image (500 × 667 pixels) was

displayed, and participants made an untimed judgment.
For the reachability task, the instructions were to
“Judge whether the view was within reach or out of
reach.” Participants chose among those two options in
a forced-choice task. For the goodness-of-view task,
the instructions were to “Judge how good the current
view is. Let’s say you are a photographer. Given this
view, which would give you a better view?” Participants
chose among three response options: taking one step
forward, taking one step backward, and taking no
steps. Forty-five ratings were obtained for each image,
for both tasks. The same stimuli and counterbalancing
method used in the Memory Experiment was used in
both rating tasks. The presentation order of stimuli
within each set was randomly determined for each
HIT.

Data preprocessing
Any HITs with average RTs falling outside of 3 SD

from the mean were removed. As above, all RTs were
log transformed prior to trimming. This procedure
was performed separately for the reachability dataset
(1.3% excluded) and the goodness-of-view dataset (1%
excluded).

Calculating reachability score and goodness-of-view
score

For the reachability task, “out of reach” responses
were assigned a score of +1 and “within reach”
responses were assigned −1. These scores were averaged
to obtain a reachability score for each image. Here, a
negative score indicated a reachable view, and a positive
score indicated a non-reachable view, in a range of [−1,
1]. For the goodness-of-view task, we assigned −1 for

“backward”, 0 for “no move”, and +1 for “forward,”
and we averaged the values for each image. A negative
goodness-of-view score indicated a preference to move
backward, and a positive score indicated a preference
to move forward, within a range of [−1, 1].

Linear mixed-effects logistic regression
A linear mixed-effects logistic regression was used to

fit the data from the reachability and goodness-of-view
tasks, using lme4 (Bates et al., 2015) implemented in
R (R Core Team, 2016). For the reachability dataset,
the model included Position as a fixed-effect term and
Environment and Subject as random intercepts and
predicted a binary outcome (within reach or out of
reach). For the goodness-of-view dataset, we excluded
no move response trials for the logistic regression and
modeled the data only with two responses (move
forward or move backward); the model included
Position as a fixed-effect term and Environment and
Subject as random intercepts.

Comparing the transition points
A bootstrap CI was used to infer the statistical

significance between the memory transition points and
transition points of reachability or goodness-of-view
judgments. First, a hypothetical dataset was created
by sampling the data with replacement within each
participant, independently for each experiment. Then,
we computed transition points using the same methods
as in the Memory Experiment and calculated the
difference of transition points between the experiments.
These procedures were repeated 1000 times, resulting
in a distribution of differences in the transition points.
The 95% CI was obtained by computing the 0.025 and
0.975 quantiles of this distribution. If this 95% CI of
the difference contained 0 (i.e., no difference between
the transition points), we inferred that there was no
statistically significant difference (p > 0.05); whereas,
if the 95% CI did not contain 0, then we inferred
that there was a statistically significant difference
(p < 0.05).

Results

Do either the reachability or goodness-of-view
judgments have transition points in a similar range
as the Memory Experiment? First, we assessed
reachability ratings, which showed a significant effect
of Position (estimated odds ratio = 1.52, p < 0.001)
and a transition point near the front of the room, as
expected (Position 10.5; transition range = 9.5–10.5)
(Figure 3B). It is noticeable that the reachability ratings
had a much smaller variance compared to the Memory
Experiment, suggesting that there was strong consensus

Downloaded from m.iovs.org on 04/20/2024



Journal of Vision (2024) 24(1):9, 1–13 Park, Josephs, & Konkle 7

Figure 3. Transition range examples and results from reachability and goodness-of-view judgments. (A) Examples of the memory
transition points from four different environments. (B) The reachability judgment score averaged by each position and an example
image of the transition point. The negative score represents within-reach judgments, the positive represents out-of-reach judgments,
and the zero represents the transition point of subjective reachability. (C) The goodness-of-view judgment score averaged by each
position and an example image of the transition point. The negative score represents a preference to step backward, the positive
represents a preference to step forward, and the zero represents the most preferred (“looks good”) view. For both (B) and (C), a
vertical gradient bar indicates a transitional range (bootstrap 95% CI), and the horizontal bar on top of the plot shows the transition
range from memory distortions (light blue).

across different individuals and stimulus environments
regarding whether the current view was reachable or
not. This reachability transition range was very similar
to the boundary extension/boundary contraction
transition (visually indicated in Figure 3B with the
horizontal bars for reference), although significantly
closer to the front of the room (difference = 2.0;
95% CI, 0.7–6.2; p < 0.05). However, this significant
difference was quite small, as perceptually evident when
inspecting the example images shown in Figure 3B.
Thus, the direction of memory distortions might indeed
be linked to whether the space is perceived to be within
or out of reach.

Considering the goodness-of-view ratings, we also
found a smooth transition along the continuum (i.e.,
significant effect of Position, with estimated odds
ratio = 1.14; p < 0.001), where participants chose
to step backward for near-scale images but chose
to step forward for far-scale images (Figure 3C).
Interestingly, the transition point between these
response options (i.e., the preferred or canonical
view) was also in the same range (Position 10.5;
transition range = 9.5–10.5) with the reachability
transition (difference = 0; 95% CI, −1 to 1; p
< 0.05). Additionally, the “no move” responses
peaked around Positions 10 and 11 (Supplementary
Figure S4A), further supporting the existence of a

consistent canonical view in this region along the
continuum. Thus, the memory distortion effect might
also be anchored around a canonical view of the
environment.

Taken together, from the first set of experiments, we
found suggestive evidence that both reachability and
the goodness-of-view transition might track with the
transition in memory errors. Is it possible to modify
the virtual environments to dissociate reachability and
goodness-of-view judgments?

We reasoned that reachability judgments should be
relatively insensitive to the number and position of
the surrounding objects in the environment, as such
judgments are a factor of the length of the viewer’s
arm and the presence of a target relative to which they
can measure distance. In contrast, goodness-of-view
judgments may be relatively more sensitive to the
overall distribution of multiple objects in the image
(Leyssen, Linsen, Sammartino, & Palmer, 2012). Thus,
in the following experiments, we created “low-object
environments,” predicting that these changes in the
object content of environments would allow us to
further dissociate reachability and goodness-of-view
judgments.

Further, many studies have shown that the direction
and strength of memory errors are influenced by the
object content of a scene, including the retinal size of
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the main object (Bertamini et al., 2005), the salience of
the main object (Gallagher, Balas, Matheny, & Sinha,
2005), and the level of clutter around the main object
(Gottesman, 2012; Gottesman, 2011; Gottesman,
2014). Based on this prior literature, it is likely that the
transition range in memory errors will also change in
these low-object environments, relative to the rich object
environments used in the first set of experiments. Thus,
in a second set of experiments, we measured memory
errors, reachability, and goodness of view in low-object
environments.

Low-object environments

A second stimulus set of visual environments was
created from the original environments, but with all
of the small and manipulable objects removed (e.g.,
cups, books), leaving only the immovable surfaces and
furniture-like structures (e.g., kitchen countertops, large
tables) (Figure 4). Thus, these low-object environments
shared the same spatial layout and background
content as the original object-rich environments but
differed substantially in their object content. Next,
images along the continuum were generated using
the same parameters as the previous experiments,
resulting in 600 unique stimuli (20 environments ×
30 positions).

We completed the same three experiments reported
above but used the new low-object stimulus set. All
experimental details were identical. Data were collected
from 173 participants in the Memory Experiment,
213 participants in the reachability task, and 153
participants in the goodness-of-view task (gender and
age information was not collected). The data trimming
procedures led to the exclusion of 2.8% of trials from
the Memory Experiment dataset, 1.5% of trials from

the reachability dataset, and 0.7% of trials from the
goodness-of-view dataset. As these paradigms were
identical to the first set of experiments, the sample
size was determined based on a power analysis on the
rich-object environments data. The results are shown
in Figure 5A.

In these low-object environments, the reachability
and goodness-of-view transition ranges were quite
different. Specifically, as expected, the reachability
ratings remained at the front of the environment
(Position 13.5; transition range = 12.5–13.5)
(Figure 5A, bottom row), comparable between the
low-object and rich-object environments. However, the
goodness-of-view ratings were shifted toward a much
farther view of the scene (Position 21.5; transition
range = 20.5–22.5) (Figure 5A, middle row), showing a
much larger transition point change between low-object
and rich-object environments for the goodness of view
than reachability. Example views of the reachability
and the goodness-of-view transition are shown in
Figure 5B.

Critically, the transition point in memory distortions
was also shifted substantially further back (Position
23.5; transition range = 18.1–27.2) (Figure 5A, top row;
see Supplementary Figure S2 for estimated transition
points for each environment). The memory transition
range tracked closely with the goodness-of-view
transition range (difference = 2; 95% CI, −3.4 to
5.7; p > 0.05) and was significantly different from
the reachability range (difference = 10; 95% CI,
4.6–14; p < 0.05). Thus, these experiments clearly
demonstrate that that transition range in memory is
not linked to the point of reachability of the view
but instead seems to be linked to properties of the
image or environment that also manifest in preference
judgments.

Finally, one possible critique of the paradigm
used here to evaluate boundary extension is that it

Figure 4. Low-object environments. All of the small and manipulable objects were removed from the rich-object environments,
leaving the immovable surfaces and furniture-like structure present such as kitchen countertops or cabinets. As a result, two sets of
environments shared the same spatial layout but differed substantially in their object content.
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Figure 5. Low-object environment results and transition points. (A) The mean score by position from each paradigm. Positions around
zero (y-axis) indicate the transition point, and a vertical gradient bar represents the transitional region (bootstrap 95% CI). Compared
to the rich-object environments (Figures 2 and 3), the transition region shifted much further in the memory distortion and
goodness-of-view judgments. However, the transition region of subjective reachability remained in relatively similar positions
regardless of the stimulus set. (B) Examples of transition points from each paradigm. Critically, the transition range of goodness of
view showed much closer resemblance to that of memory distortion, favoring the canonical view account.

is the kind that is likely to induce “normalization”
based on the range of viewing distances present
in the stimulus set. However, in this second set of
experiments, we have the same range of viewing
distances but a different transition point. Thus, these
two experiments together indicate that a simple generic
distance-normalizing mechanism (e.g., to the center
of the environment) cannot fully account for these
data. Instead, these data highlight that the transition
between boundary extension and contraction depends
on the interplay between object and scene processing,
and they contribute new empirical evidence that this
same interplay is linked to the preferred view of the
environment.

General discussion

The goal of the current study was to map the
transition point between boundary extension and
boundary contraction memory errors along an object-
to-scene continuum and to consider two hypotheses
about the location of this transition point. Our
approach leveraged custom-made 3D environments and
systematically sampled views in these spaces, covering a
more extensive range than previous studies. We found
consistent transitions between boundary extension
and boundary contraction, where the likelihood of
the memory distortion varied highly systematically
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with the viewing distance of the image, replicated in
both object-rich and low-object environments. And,
we found that the point in the environment at which
there was no memory distortion was not linked to a
specific viewing distance in the scene, such as the point
of reachability, but was instead linked to judgments
of the view that “looked best.” Broadly, these results
highlight that insight into the systematic distortions
in scene memory can be gained by understanding the
relationships among boundary extension, contraction,
and the canonical view of the environment.

One possible relationship is a prior-based account of
these phenomena, which draws on the reconstructive
memory literature; that is, perceptual traces are
encoded with respect to a structured prior distribution
(e.g., Bartlett, 1932; Hemmer & Steyvers, 2009b;
Huttenlocher, Hedges, & Vevea, 2000). In this Bayesian
framework, systematic memory biases are signatures
of optimal encoding of noisy perceptual input (e.g.,
Hemmer & Steyvers, 2009a). On such an account, each
view of a scene is encoded with respect to some scene
prior, which presumably includes information about
a canonical vantage point within the space, biasing
memory toward that point and yielding parametric
extension or contraction. Because judgments of the
best-looking views are also thought to draw on this
internal scene prior (Gardner & Palmer, 2010), this
account can also explain why the goodness-of-view
ratings and memory errors closely tracked each other.
However, this account alone does not articulate what
scene properties are relevant for the prior; for example,
it does not make a priori predictions that the canonical
view would shift back in low-object environments. Thus,
this account requires further specification; currently
it can likely account for any pattern of data without
making specific predictions for the direction of memory
errors under different environmental configurations.

A more perceptual, dynamic-tension account of
these data—one that we favor—is that, for any view, a
balance of two oppositional forces determines whether
subsequent memory will be extended or contracted.
Each view is encoded in parallel with scene-based and
object-based mechanisms. The scene-based mechanism
is sensitive to global scene properties, such as concavity,
navigability, openness, and mean depth (Bonner &
Epstein, 2017; Cheng, Walther, Park, & Dilks, 2021;
Greene & Oliva, 2009; Park & Park, 2020), and is
biased to construct a broader view, perhaps via the
amodal scene construction originally proposed by
Intraub (2012). At the same time, the object-based
mechanism exerts pressure to process objects in more
detail or with higher fidelity, perhaps via object-based
attention (Beighley, Sacco, Bauer, Hayes, & Intraub,
2019), resulting in down-weighting or loss of peripheral
information.

In this dynamic-tension proposal, the view that
“looks best” is the one that balances these opposing

affordances (rather than corresponding to the peak of
an internal distribution). This account also naturally
lends an explanation to some key patterns of our
data. Rich-object environments, with their prominent
object content, may have closer transition points
(and preferred views) to balance the needs of object
recognition, whereas low-object environments have
farther transition points to favor spatial analysis of
the environment. Indeed, the view that looks best for
the low-object environments is just about where you
start to see the side walls (Figure 5), which provide
a stronger sense of 3D boundary and concavity
to a viewer. It is an open question if the semantic
relatedness of the object and scene mechanisms matter;
for example, we predict that the object-processing
component is relatively general and would operate
similarly over novel or semantically incongruent objects
in the scene of matched physical size. Overall, this
account generally promotes thinking of the interplay
between competing object-processing and spatial-layout
processing mechanisms (Mullin & Steeves, 2013), such
as predicting sensitivity to attentional manipulations
and task demands, beyond static image-based
information.

Finally, it is important to note that, in order to obtain
a smooth continuum between scene-centered and
object-centered views, we varied the FOV and distance,
coming into a close crop of the object for the closest
views to be compatible with previous studies. However,
during naturalistic viewing, the vergence of the eyes on
an object changes the human FOV far less dramatically
than implied here, and visual content is not cut off with
an image border. Future research could explore memory
distortions in full-field viewing (e.g., Park, Soucy,
Segawa, Mair, & Konkle, 2023), allowing far-peripheral
visual processing to be engaged in situating the content
and operations of central vision. Given the importance
of central and peripheral information for visual system
organization (Arcaro & Livingstone, 2017; Hasson,
Harel, Levy, & Malach, 2003; Knapen, 2021), this may
be a productive line of inquiry, moving the study of
visual scene memory beyond the picture plane into
agent-directed movements through an environment.

Keywords: scene memory, canonical views, virtual
environments, aesthetic preferences
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Footnote
1Note that, in an earlier version of this manuscript, we used a logistic
function equation and fitted coefficients to estimate the transition, but in
revision we found that the single-subject data were poorly fitted with this
method. The current manuscript describes a more data-focused method
we adopted to estimate the transition point. To further check for the
stability of this procedure for estimating the transition points, we explored
two types of variations. First, we estimated transition points with different
levels of moving-average smoothing. For this, the mean scores were first
smoothed across positions by computing the rolling average with a given
window size, which was varied from two to six positions. We found that
across these smoothing procedures the estimated transition points varied
only minimally, approximately one Position. Second, we applied different
constraints on how the data are resampled in the bootstrap procedure.
Whether resampling within each position (across participants) or within
each position and environment, we found similar CIs for the position
range, with no qualitative differences in the overall patterns of results.
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