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PURPOSE. Intravitreal injection of drugs is commonly used for treatment of chorioretinal
ocular pathologies, such as age-related macular degeneration. Injection causes a transient
increase in the intraocular volume and, consequently, of the intraocular pressure (IOP).
The aim of this work is to investigate how intravitreal flow patterns generated during the
post-injection eye deflation influence the transport and distribution of the injected drug.

METHODS. We present mathematical and computational models of fluid motion and mass
transport in the vitreous chamber during the transient phase after injection, including
the previously unexplored effects of globe deflation as ocular volume decreases.

RESULTS. During eye globe deflation, significant fluid velocities are generated within the
vitreous chamber, which can possibly contribute to drug transport. Pressure variations
within the eye globe are small compared to IOP.

CONCLUSIONS. Even if significant fluid velocities are generated in the vitreous chamber after
drug injection, these are found to have negligible overall effect on drug distribution.

Keywords: intravitreal drug delivery, eye deflation, mathematical modeling, age-related
macular degeneration

I ntravitreal drug injections are routinely used to deliver
drugs for the treatment of certain types of chorioreti-

nal disease, most commonly for delivery of intravitreal anti-
VEGF agents for the treatment of neovascular age-related
macular degeneration but also to treat diabetic macular
edema, retinal vein occlusion, and non-infectious uveitis.1

Such injections are now very widely used; for example, one
review, drawing from a single US database, identified more
than 800,000 intravitreal injections being administered over
an 18 month period to treat neovascular age-related macular
degeneration.2

When a drug is injected into the vitreous chamber, it
can be transported by diffusion and by advection, the latter
mechanism being related to a very slow fluid motion from
the anterior segment of the eye to the retina, due to a
combination of aqueous production at the ciliary processes
and active fluid pumping by the retinal pigment epithelium
(RPE). Transport processes in the vitreous chamber have
been studied in a number of works that have employed
numerical analyses,3–7 in vitro experiments,8,9 and in vivo
measurements.10 Various authors3–5 have used numerical
simulations to show that, even if the velocities associated
with this bulk percolation flow are very small (∼ 10−8 m/s),11

advection is an important transport mechanism, especially in
the case of large molecules with small diffusivities. Further,
various authors have shown that vitreous motion induced by
eye rotations can also play a key role in transport processes
in the vitreous chamber.9,12–14

In the case of drug injection into brain tissue, Basser15

showed with a mathematical model that fluid flow can also
be generated by another mechanism. The tissue is locally
pressurized at the injection site, which drives fluid away. This
fluid motion can be explained making use of Biot’s consol-
idation model, which is a classic theory in soil mechan-
ics.16 Basser’s work for transport in the brain is based on
the assumption that the brain tissue is a porous material of
infinite extent. Chan et al.17 have speculated that a similar
mechanism can take place in the eye after a vitreoretinal
injection, even if Basser’s theory cannot be directly applied
in this case as the eye has finite size and an intraocular injec-
tion will lead to scleral expansion and a pressure elevation.

The injection of a drug-containing fluid into the eye,
typically 50 μL delivered via a needle, leads to a well-
documented transient increase in IOP,18–20 which is related
to the compliance of the ocular globe.21,22 This IOP increase
resolves as fluid drains from the eye at a greater than normal
rate. Although several studies have considered intraocular
flow patterns associated with an intravitreal injection,23–25

they have not included the effects of transient globe expan-
sion and deflation. In this work, we present a mathemati-
cal model to study fluid motion and mass transport within
the vitreous chamber after an intravitreal drug injection.
Our aim is to assess whether and to what extent this flow
may contribute to transporting the injected drug within the
vitreous chamber. The problem is of clinical relevance since
understanding drug transport processes within the vitreous
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body is key to predicting the fate of the drug in the eye,
particularly the regions of the retina that will preferentially
receive the treatment and the associated time scales.

MATHEMATICAL MODEL

We model the eye as an elastic sphere filled with vitreous
humor, which is assumed to be an incompressible, poroe-
lastic medium. Although the vitreous does not entirely fill
the globe, this is a reasonable approximation, since the
vitreous volume is a major part of total globe volume, the
other components are effectively incompressible, and (as
will be seen below) the vast majority of the relevant fluid
mechanical effects occur in the vitreous. The injected fluid
is modeled as Newtonian and incompressible. Given an
injected volume of Vinj = 50 μL and an injection flow rate
of Qinj = 1 mL/min,26 we can estimate the injection time
as tinj = Vinj/Qinj ≈ 3 s. This is very rapid compared to the
subsequent dynamics (verified a posteriori); hence, we here
simply model eye globe deflation, assuming that the injec-
tion is effectively instantaneous. We therefore take time zero
to be immediately after the injection, when an increase in
ocular volume (equal to the injection volume) has produced
a pressure increase, which, in turn, drives flow out of the
eye during deflation.

Zero-Dimensional Model of Eye Globe Deflation

It is convenient to review the well-established formulation
of a zero-dimensional transient model to describe defla-
tion of the eye globe, which leads to a problem governed
by a simple time-dependent ordinary differential equation
(ODE). Mass conservation requires that variation over time
of the eye volume is related to the difference between
fluid flux into the eye and out of it. This is mathematically
expressed as

dVo
dt

= Qin − Qout , (1)

with t time, Vo = Vo(t) the total volume of the eye, Qin the
rate of aqueous humor production by the ciliary processes
minus rate of pressure-independent outflow, and Qout the
rate of pressure-dependent outflow. We assume that Qin is
constant and equal to 2.2 μL/min.27

IOP (denoted by P) is related to globe volume Vo through
ocular compliance, and C = dVo/dP, which is assumed to be
constant and equal to 1 μL/mm Hg.21 This quantifies the
capacity of the eye to change its volume in response to
an IOP change. Moreover, we describe pressure-dependent
outflow by

P − Pepv = QoutR, (2)

where Pepv is the episcleral venous pressure, and R is the
hydrodynamic resistance to fluid drainage, assumed to be
constant. Episcleral venous pressure depends on posture
and other factors; we here assume Pepv= 8 mm Hg.28–30

Under physiologic conditions (indicated hereafter with a
hat over the corresponding variable), we have Qin = Q̂out ,

from which we obtain R = (P̂ − Pepv )/Qin. In other words,
the resistance can be computed as the difference between
the physiologic IOP and episcleral vein pressure, divided by
the aqueous production rate. Substituting the above expres-

sions into (1), we obtain

dP

dt
= 1

C

(
Qin − P − Pepv

R
)

= 1

C

(
Qin − P − P̂ + P̂ − Pepv

R
)

= −P − P̂

RC , (3)

where we have used the fact that Qin = Q̂out = (P̂ − Pepv )/R.
This equation shows that the variation in time of IOP is
proportional to the difference between the actual value of
IOP and the physiologic one and inversely proportional to
ocular compliance and resistance to aqueous drainage.

The ODE (3) can be solved subject to an initial condi-
tion that specifies IOP at the initial time, P(0), which in turn
depends on the volume of the injected fluid Vinj through the
expression P(0) = Vin j/C + P̂. The resulting analytical solu-
tion is

P = P̂ + Vin j
C

exp

(
− t

RC
)

, Vo = V̂ +Vin jexp

(
− t

RC
)

. (4)

The above relationships show that both pressure and
volume decrease exponentially in time after injection, with
time scale τ = RC.

Three-Dimensional Model of Eye Globe Deflation

Formulation of the Problem. We now investigate the
flow generated in the vitreous chamber during the deflation
phase and its effect on drug transport. We idealize the prob-
lem by assuming that the drug solution is injected into the
center of the vitreous and expands uniformly during injec-
tion, so that a spherical “bubble” of drug solution forms,
whose center coincides with the center of the eye. This is
schematically illustrated in Figure 1, where, in each row,
the second sketch depicts the initial time, with an increased
eye volume and the liquid pool containing the drug in the
center. We further assume that, at all times, the geometry of
the domain can be described as two concentric spheres with
time-varying radii: the outer sphere (with volume Vo) repre-
sents the eye globe, while the inner sphere (with volume
Vi) represents the bolus of injected fluid (see Fig. 1). The
space between the two spheres is occupied by the vitreous
humor, whereas the inner sphere contains only the injected
fluid (including the drug). We assume that the injected fluid
displaces the vitreous body, creating an inner fluid bolus,
without changing vitreous porosity. Thus, at the initial time,
the volume of the inner sphere coincides with the injected
volume, Vi(0) = Vin j = Vo(0) − V̂ .

The contribution of stresses within the sclera in support-
ing the increased pressure in the eye, secondary to the injec-
tion, is expected to be much greater than the contribution
due to stresses in the poroelastic vitreous body. In brief, the
elastic modulus of the sclera is approximately five orders of
magnitude larger than that of the vitreous.31,32 We use this
fact, as well as the formula for the expansion of a thick-
walled internally pressurized elastic incompressible sphere,
to compute the relative expansion expected from 1) the
vitreous alone containing an internally pressured bolus of
fluid and 2) the scleral shell alone, which is acted upon
internally by the IOP. Specifically, if the sphere has external
and internal undeformed radii of a and b, respectively, then
�a = 3P̂a

4E ( 1
(a/b)3−1

), where P̂ is the internal pressure (IOP
in physiologic conditions), E is the Young’s modulus of the
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FIGURE 1. Sketch of the four different phases during intravitreal injection treatment for case A (top) and case B (bottom). The red circle
represents the injected bolus of drug-containing fluid. Arrows represent the drainage of fluid out of the eye.

sphere wall, and �a is the expansion of the outer surface
of the sphere.33 Using superscripts S and V to denote sclera
alone and vitreous, the internal radius for the vitreous is that
of the injected fluid bolus (bV ≈ 2.3 mm) and the external
radius is approximately the radius of the eye (aV ≈ 1.1 cm
for a human eye). In the case of the sclera, the internal radius
is approximately bS = aV, while the external radius aS = bS

+ h, where h is the scleral thickness (≈ 670 μm). Noting that
(aV/bV)3 � 1 and h/bS � 1, the ratio of the expansion of the
sclera alone to the vitreous alone can be expressed as

�aS

�aV
≈ EV

ES
R̂

3h

V̂

Vin j
, (5)

where R̂ (≈ aV) is the physiologic radius of the eye. This ratio
is approximately ( ≈ 10−5)( ≈ 5)( ≈ 120) ≈ 0.006 � 1. This
shows that the contribution of the vitreous in withstanding
the internal pressure is negligible.

The vitreous also has a viscosity, which produces viscous
stresses during the deflation phase. However, this contribu-
tion is also negligible when compared to the resistance to
fluid outflow from the eye globe. This is demonstrated by the
fact that the typical relaxation time of the vitreous body is
less than 1 second (estimate based on data reported in Tram
et al.31) and thus much shorter than the deflation time of the
eye of interest in our model, which is of tens of minutes.

For the above reasons, we do not solve an equilibrium
equation for the vitreous and simply assume that it behaves
as an incompressible material. Given the above assumption,
the variation in time of the outer and inner volumes are

equal, so that dVo/dt = dVi/dt. The radii of the two spheres
are computed as

Ro (t ) = 3

√
3Vo (t )
4 π

, Ri (t ) = 3

√
3

(
Vo (t ) − V̂

)
4 π

, (6)

where Vo(t) is given by Equation (4). We note that, since we
assume that both the injected fluid and the vitreous body are
incompressible materials, the increase in pressure within the
domain during injection is uniform and instantaneous.

Owing to the spherical symmetry of the domain and of
vitreous displacement field, the incompressibility condition
imposes

u̇r = V̇o (t )
4πr2

, (7)

with r denoting the radial coordinate, ur denoting the radial
component of vitreous displacement, and over dots indicat-
ing differentiation with respect to time.

Fluid percolates through the vitreous body, and accord-
ing to Darcy’s law for fluid flow in a porous medium, the
following relationship holds:

q = v − u̇ = − k

μ
∇p, (8)

where v is fluid velocity in the fixed frame, u is tissue
displacement, k is vitreous permeability to water, μ is the
dynamic viscosity of the percolating fluid, and p(x, t) is the
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FIGURE 2. Sketch of the domain for cases A and B, consisting of an inner fluid bolus (black circle) centered within the eye globe (red circle
in case A, red/black circle in case B). Red outward-pointing arrows signify fluid exiting the eye globe. Bi is the inner fluid bolus surface
(radius Ri), and Bs is the scleral surface (radius Ro). In case B, Bs1 is the surface from which fluid exits the domain, and Bs2 is the rest of
the eye globe surface.

pressure, which is now a function of both time and posi-
tion. Note that the above equation accounts for the fact that
also the solid matrix of the tissue can possibly move. To
distinguish the pressure used in Darcy’s law from the IOP in
the zero-dimensional model, we here denote pressure with
a small p, as opposed to the capital P used in the previ-
ous section. Taking the divergence of the above expression,
assuming that both fluid and solid matrix are incompress-
ible and that k does not vary with space, we find that the
pressure satisfies Laplace’s equation, which is a statement of
mass conservation, and reads

∇2p = 0. (9)

Solute (drug) transport is governed by the advection
diffusion equation that can be written as

∂c

∂t
= ∇ · (D∇c) − ∇ · (vc) , (10)

where c is the concentration of injected drug and D is the
diffusion coefficient (assumed constant).

We solve Equations (9) and (10) in a domain bounded
by the two spherical surfaces (see Fig. 2), the radii of
which change over time, according to Equation (6). The
initial condition imposes that the pressure is constant in the
domain and equal to P(0).

Equations (9) and (10) require boundary conditions. We
consider the following two limiting cases.

• Case A. Fluid outflow is assumed to be spherically
symmetric and to thus involve the whole corneoscle-
ral surface, as shown in Figure 1, top row, and
Figure 2A.

• Case B. Fluid outflow occurs entirely through the
trabecular meshwork and is thus localized to a
specific region of the corneoscleral surface, as depicted
in Figure 1, bottom row, and Figure 2B.

Case A: At the scleral surface (Bs), we impose a constant
water flux

q · n|Bs = qr = − k

μ

dp

dr
= − V̇o

4πR2
o

, (11)

where n is the outward unit normal vector to the scle-
ral surface, which is purely radial. The value of the fluid
flux imposed (right hand side of Equation (11)) is derived
from the zero-dimensional solution of the Zero-Dimensional
Model of Eye Globe Deflation section.

Since the problem has spherical geometry, fluid velocity
is purely radial and the incompressibility condition implies
that vr is proportional to r−2, similar to the dependence of
vitreous displacement on r. Equation (7) and condition (11)
immediately show that

vr = 0. (12)

Since fluid velocity in the laboratory frame is zero,
there is no advective contribution to solute transport and
Equation (10) reduces to the diffusion equation. In this case,
the concentration is just function of r and t, and this equation
reads

∂c

∂t
= D

1

r

∂

∂r

(
r
∂c

∂r

)
. (13)

We assume that solute cannot cross the scleral surface;
thus, at the scleral boundary, we impose a zero solute flux
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condition

qs · n∣∣
Bs = 0. (14)

Solute flux takes the general form qs = −D∇c+ cv, and in
this case, v = 0. Thus, the above equation reads −Ddc

dr = 0
on Bs. Condition (14) could be replaced by an adsorption
condition at the retina. However, over the time scale of our
simulations, the concentration of the drug at the boundary
is negligible, which means that condition (14) is effectively
correct.

At the surface of the inner fluid bolus (Bi), we impose
the values of the pressure and drug concentration (Dirichlet
boundary conditions)

p|Bi = P (t ) , c|Bi = c0, (15)

where the imposed pressure P(t) is determined from
Equation (4), under the assumption that the pressure drop
across the vitreous is small compared to the IOP (justified
a posteriori). Moreover, c0 is the drug concentration in the
injected fluid.

Case B: Here the scleral surface is subdivided into two
regions Bs = Bs1 ∪ Bs2, where Bs1 is the surface from which
fluid exits the domain (the trabecular meshwork region) and
Bs2 is the rest of the eye globe surface now considered imper-
meable, as shown in Figure 2 (case B). Using spherical coor-
dinates, Bs1 is the region defined by θ1 ≤ θ ≤ θ2 and 0 ≤ φ

< 2π , with θ and φ being the polar and azimuthal angular
coordinates, respectively. We impose

q · n|Bs1 = Q

As1
= − V̇o

As1
, (16)

q · n|Bs2 = 0, (17)

where As1 is the area of the outlet region Bs1, which is equal
to 2πR2

o(cos θ2 − cos θ1). For modeling solute transport, we
impose zero flux across the sclera on Bs2, as for case A, and
zero diffusive flux on Bs1.

The conditions at the inner boundary (Bi) are the same
as for case A and are given in Equation (15).

Solution. Equations (9) and (10) have been imple-
mented in weak form in COMSOL Multiphysics and
solved numerically, assuming axial symmetry. Deforma-
tion of the domain was modeled using the “deformed
geometry” tool. The typical mesh used in the simulations
consisted of approximately 15,000 unstructured triangular
elements, with a corresponding mean elemental density of
3.9 × 107 elements/m2. We conducted mesh invariance tests
using eight meshes, increasing the number of elements by
∼10% in each mesh and sampling the computed pressure
at five fixed locations. The mesh used for production runs
showed a variation of pressure of less than 1% with respect
to the most refined one.

An analytical solution for fluid motion, which is governed
by the Laplace Equation (9), can also be found, taking advan-
tage of the spherical shape of the domain and assuming that
the outflow region is so small that it can be modeled as a line
sink (equivalent to a point sink in our axisymmetric model).
In the limit of θ2 → θ1, the condition (16) reads

− k

μ

∂p

∂r

∣∣∣∣
r=Ro(t )

= Q (t ) δ (θ − θ1)
2 π sinθ1 R2

o (t )
, (18)

where δ(θ − θ1) denotes the Dirac delta function, centered
at θ1, and Q(t ) = −V̇o(t ) is the fluid outflow rate from the
globe. The above condition satisfies the requirement that
the total outflow rate is Q(t). At the inner spherical surface,
r = Ri, we still use the Dirichlet condition on the pressure
(15).

We use separation of variables and find that the solution
to the Laplace equation can be written in terms of an infinite
sum of Legendre polynomials,34 in the form

p (r, θ ) =
∞∑
l=0

αl r
lPl (cosθ ) +

∞∑
l=0

βl
1

rl+1
Pl (cosθ ) , (19)

where Pl is the Legendre polynomial of degree l and we have
not included the modified Legendre polynomials, since they
are singular at the poles, which is not physical in our case.
The coefficients αl and β l can be determined by imposing
the boundary conditions at Ri and Ro and taking advantage
of the orthogonality properties of the Legendre polynomials
to obtain

αl = − 1

R2l+1
i

Q

4kπR2
o

Pl (cosθ0)
2l + 1

l R
l−1
o

R2l+1
i

+ l+1
Rl+2
o

,

βl = Q

4kπR2
o

Pl (cosθ0)
2l + 1

l R
l−1
o

R2l+1
i

+ l+1
Rl+2
o

. (20)

This analytical solution matches very closely the numer-
ical results presented in the Results section (not shown).

Parameter Values

The angle θ1 shown in Figure 2 has been estimated using the
maximum depth H and maximum diameter L of the anterior
chamber and the radius of the eye R̂o (Fig. 2), according to
the following relationship:

θ1 = tan−1 L/2

R̂o −H
. (21)

Assuming H = 2.63 mm,35 L = 13 mm,36 and R̂o =
11.3 mm, the above equation gives θ1 = 39°.

The area subtended by aqueous drainage structures (i.e.,
the area of the trabecular meshwork) can be expressed as

As1 =
2π∫
0

θ2∫
θ1

R̂2
o sin θ dθ dφ = 2π R̂2

o (cos θ1 − cos θ2) . (22)

Following Heys et al.,37 we assume a value of As1 =
18 mm2. Using this value and (22), we find �θ = θ2 − θ1

≈ 2°.
The aqueous outflow resistance R of the pressure-

dependent outflow pathway is estimated as explained in
the Zero-Dimensional Model of Eye Globe Deflation section,
according to the following equation:

R =
(
P̂ − Pepv

)
Qout

. (23)
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TABLE. Parameter Values

Parameters and Data Symbols Value Species Reference

Angle subtended by aqueous drainage structures on corneoscleral shell �θ 2 deg — Derived
Aqueous humor production rate minus pressure-independent outflow rate Qin 2.2 μL/min Human 40

Aqueous outflow resistance R 3.18 mm Hg min/μL — Derived
Diffusion coefficient of bevacizumab D 7 × 10−11 m2/s — Derived
Bevacizumab concentration c0 0.17 mol/m3 Human 50

Episcleral venous pressure Pepv 8 mm Hg Human 28–30

Injected volume of drug solution Vinj 50 μL Human 51

Intraocular pressure in physiologic conditions P̂ 15 mm Hg Human 18–20

Ocular compliance C 1 μL/mm Hg Human 21

Ocular volume in physiologic conditions V̂ 6000 μL Human 52

Vitreous hydraulic conductivity k/μ 8.4 × 10−7cm2/(Pa s) Bovine 5

We use as physiologic IOP the value P̂ = 15 mm Hg
and an episcleral venous pressure of Pepv = 8 mm Hg.28–30

The aqueous humor flow rate minus the pressure insensi-
tive outflow rate is taken equal to 2.2 μL/min.38,39 Based on
these values, we obtainR = 3.18 mm Hg min μL−1. In Goel’s
work,40 an estimated value for the resistance of the conven-
tional aqueous drainage tissues ranges between 3 and 4 mm
Hg min μL−1, which is consistent with our choice.

We focus here on the injection and subsequent transport
of bevacizumab, a commonly injected drug. We estimated
bevacizumab’s diffusion coefficient in the vitreous by first
using the Stokes–Einstein equation to estimate the diffusivity
in free solution (unhindered diffusion):

D = kBT

6πμa
, (24)

where kB is Boltzmann’s constant (1.38 × 10−23 J/K), T
is the absolute temperature (310 K), and a denotes the
hydrodynamic radius of the diffusing species. For beva-
cizumab, we have a = 4.58 × 10−9 m,41 which yields D =
7 × 10−11 m2s−1, in line with the value derived by Hutton-
Smith et al.42 The question then arises as to the appro-
priate value of D in the vitreous, where some degree of
diffusive hindering may occur. The major components of
the vitreous humor are collagen and hyaluronan, and we
here estimate the pore sizes in the vitreous from knowl-
edge of their concentrations. We first consider collagen,
whose concentration in the bovine vitreous is 1.1 × 10−2

weight %,43 which corresponds to a collagen solid fraction

of φ = 8 × 10−5, considering a density of collagen fiber of
ρc = 1420 kg/m3.44 Idealizing collagen fibrils in the vitreous
as uniformly distributed cylinders of radius ac = 12.5 nm,45

the solid fraction can be expressed as φ = π ( acb )
2, where

b is the side of a “squared unit cell” around each collagen
fiber,46 which is equal to half the characteristic interfiber
spacing. Based on this approach, we compute a character-
istic interfiber spacing of 2.5 × 10−6 m, which is far larger
than the hydrodynamic radius of bevacizumab, from which
we conclude that collagen in the vitreous does not appre-
ciably hinder the diffusion of bevacizumab. A similar calcu-
lation can be repeated for hyaluronan, using a concentra-
tion of 2 × 10−2 weight % (φ = 6.1 × 10−5, with hyaluro-
nan density ρh ≈ 1800 kg/m3) and fiber radius of 0.5 nm,
yielding a characteristic interfiber spacing of 1.1 × 10−7 m,
which again is much larger than the hydrodynamic radius
of bevacizumab. We therefore expect that, to a first approx-
imation, diffusive hindrance due to the vitreous is modest,
and we therefore use the free solution value for the diffusion
coefficient of bevacizumab in our calculations, namely, D =
7 × 10−11 m2s−1. All the parameters used in this work are
summarized in Table.

RESULTS

Figure 3 shows the variation of IOP and the “excess” ocular
volume (Vo(t ) − V̂ ) with time, for three different values
of ocular compliance. We observe the expected inverse
relationship between compliance and initial pressure, with
relaxation time scales varying with the ocular compliance.

FIGURE 3. Variation of intraocular pressure P (a) and volume V (b) versus time for three values of ocular compliance, C. The black curves
correspond to the baseline ocular compliance value (C = 1 μL/mm Hg), while the blue and red curves correspond to ocular compliance
values 1.5 times larger and smaller than the baseline value, respectively. The dashed line in (a) represents the physiologic (equilibrium)
value of intraocular pressure, while V̂ is the equilibrium physiologic intraocular volume.
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FIGURE 4. Case B, in which fluid exits through the trabecular meshwork, showing (a) pressure distribution p(x, 0) (mm Hg) at the initial
time; (b) magnitude and streamlines of fluid velocity relative to the vitreous, q(x, 0) (m/s) at the initial time; (c) magnitude and streamlines
of fluid velocity relative to a fixed frame (max velocity 1.74 × 10−5 (m/s)), v(x, 0), (m/s) at the initial time (max velocity 1.72 × 10−5 (m/s));
and (d) concentration distribution c(x, tfin) (mol/m3) at time tfin = 1000 seconds.

The maximum value of the radial velocity of the eye wall
occurs at the initial time and, using the parameters of
Figure 3 (black curve), is approximately 0.2 μm/s.

In case A, the fluid is stationary in the laboratory frame
(see Methods). This somewhat counterintuitive result means
that fluid flux relative to the vitreous body is effectively
produced by the shrinking of the domain, that is, the defla-
tion of the globe makes the vitreous to move inward toward

the center of the globe, causing the stationary fluid to perco-
late through the porous vitreous. This theoretical prediction
has been validated numerically using COMSOL Multiphysics
(data not shown).

Case B is more complex. In Figure 4a, we show the pres-
sure distribution in the domain, while Figure 4b shows the
magnitude |q| of the fluid velocity relative to the vitreous.
Both plots are at the initial time. As expected, the pressure
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FIGURE 5. Simulation results from a case intermediate between A and B, in which 80% of fluid exits through the conventional pathway and
the remainder through the sclera/unconventional pathway. (a) Pressure distribution p(x, 0) (mm Hg) at the initial time and (b) magnitude
and streamlines of fluid velocity relative to the vitreous, q(x, 0) (m/s), at the initial time (max velocity 1.39 × 10−5 (m/s)).

decreases from the inner bolus (where we impose the pres-
sure P computed from the lumped parameter model) to the
region where the fluid exits the domain via the trabecular
meshwork, Bs1. We note that pressure variations within the
vitreous are small compared to P, which justifies our choice
of imposing P at the inner boundary. The isobars, reported
in the plot, are orthogonal to the boundary in the region
Bs2, which is impermeable to fluid. Relatively strong, local-
ized pressure gradients exist close to the outer boundary, at
the region Bs1.

At subsequent times (t > 0), the pressure imposed at
the margin of the fluid bolus, P(t), asymptotically decreases
to the physiologic pressure of 15 mm Hg. At all times, the
spatial distribution of the pressure remains qualitatively very
similar to that shown in the figure, and the spatial pres-
sure drop across the vitreous remains small compared to
IOP.

The fluid velocity relative to the laboratory frame v is
depicted by color contours in Figure 4c, overlain by the
streamlines of v, again at the initial time. It is interesting
to notice that fluid moves from the posterior to the anterior
region of the vitreous chamber and, by doing so, crosses
the fluid bolus. In other words, fluid enters the inner sphere
from the posterior region and exits it from its anterior side.
Fluid velocity generated in the vitreous chamber at the initial
time reaches a maximum value of approximately 6 μm/s
at the outlet and 0.8 μm/s in the region of the injection.
This flow can potentially affect the transport and distribu-
tion of the injected drug since the velocity v appears in the
advection-diffusion Equation (10).

Figure 4d illustrates the computed concentration distribu-
tion of bevacizumab (along with velocity streamlines) in the
domain. In this case, we show the results at the final time
of our simulation (≈17 min), when the IOP has approxi-

mately returned to its baseline physiologic value and fluid
flow produced during the deflation process has subsided.
The bolus of drug has moved slightly toward the front of
the eye (note that it is not exactly centered on the inner
sphere), owing to advective effects. The boundary is also
slightly blurred due to molecular diffusion.

In Figure 5, we report a more realistic case, which is inter-
mediate between case A and case B. In this case, we let 80%
of the fluid to leave the domain via the conventional pathway
and the remaining 20% from the unconventional pathway.
Note that the streamlines of q are not orthogonal any more
to the boundary of the domain since there is fluid leakage
out of it. The main conclusions drawn commenting Figure 4
relative to case B also hold in this case.

DISCUSSION

In this work, we have presented a mechanical model to study
fluid motion and drug transport within the vitreous after an
intravitreal injection of bevacizumab, with the aim of assess-
ing whether and to what extent flow associated with globe
expansion and deflation may contribute to the transport of
the injected drug within the vitreous.

Our model assumes that the eye is spherical and that
injection creates a spherical liquid pool within the vitreous
gel, which is taken to be concentric with the eye globe. We
further assume that intraocular pressure and eye volume
increase immediately after injection, and we predict that
they progressively fall back to their original baseline values,
following an exponential decay. The deflation time scale is
equal to the product of ocular compliance and hydraulic
resistance to aqueous outflow and is of the order of tens
of minutes for a human eye.

Downloaded from m.iovs.org on 04/23/2024



Drug Distribution After Intravitreal Injection IOVS | April 2024 | Vol. 65 | No. 4 | Article 9 | 9

Under the assumption that the deflation of the eye globe
after injection is radially symmetric, we study fluid flow
generated within the eye, assuming that the injected fluid
can percolate through the vitreous gel. We consider the two
following limiting cases: case A, in which fluid exits the
domain uniformly through the whole scleral surface, and
case B, where fluid outflow occurs only through the trabec-
ular meshwork. Case A is representative of fluid drainage
primarily via the unconventional outflow pathway (i.e., into
the choroid and through the sclera). Case B models outflow
via the conventional outflow pathway. In living eyes, the situ-
ation lies between these two limiting cases, 40% to 50% of
aqueous humor exiting the eye through the unconventional
route in nonhuman primates,38 although this fraction is less
in humans. Unfortunately, in humans, only indirect estimates
of unconventional outflow are available, which provide quite
sparse data (see Table 4 of Johnson et al.47).

In case A (uniform fluid exit across the globe wall), the
model predicts that no fluid motion is generated within
the vitreous chamber during deflation, which means that
the fluid flux through the sclera is entirely due to the wall
motion. Thus, in this case, drug transport in the vitreous
chamber only occurs by diffusion, and advection does not
make any contribution. If, however, fluid can exit the domain
only through a specific region (the trabecular meshwork,
as in case B), fluid motion is needed to accommodate the
uniform shrinkage of the eye. At the beginning of the defla-
tion phase, this flow produces velocities of the order of some
microns per second, which are significantly larger than fluid
velocities generated by RPE pumping,3–5,11 and this moti-
vates our interest in such a flow and its potential role on
drug transport. Indeed, the Pèclet number associated with
this flow, Pe = UL/D, is approximately 100 at the beginning
of the ocular deflation phase (here we use a characteristic
velocity U taken close to the fluid bolus and the length scale
L equal to the radius of the eye). This confirms the hypoth-
esis that advection dominates drug transport at the initial
times after injection. However, our results show that, overall,
this flow has very little effect on drug delivery to the retina,
as is clearly demonstrated by Figure 4d, which shows that
advection is not capable of transporting the drug far away
from the injection site. This is because the deflation phase
has a duration that is too short for advection to effectively
contribute to drug transport.

We note that the resistance to aqueous drainage used
in the zero-dimensional model presented in the Zero-
Dimensional Model of Eye Globe Deflation section is
computed based on all outflow being pressure dependent,
which is typically identified with the conventional path-
way, since the unconventional drainage is regarded as pres-
sure insensitive.38 Thus, the pressure decay computed in
the Zero-Dimensional Model of Eye Globe Deflation section
seems to be in contradiction with our assumptions in case A,
where outflow largely occurs by uptake into the choroid and
sclera (i.e., by pressure-insensitive unconventional outflow).
However, Johnson et al.47 highlight the fact that the uncon-
ventional drainage might to some extent depend on IOP.
This partially justifies our choice of considering case A. In
reality, the drug transport in the eye likely lies between the
predictions of cases A and B, and this situation has also
been considered (see Fig. 5). The limiting cases A and B
are, however, of particular interest as they cover the most
extreme conditions, and in both cases, the conclusion is that
fluid motion due to globe deflation does not appreciably
affect drug transport.

In this context, it is of interest to mention the experimen-
tal work of Moseley et al.,48 in which the authors injected
tritiated water into the vitreous of living rabbits and sampled
vortex veins and aqueous humor in the anterior chamber
to assess whether outflow occurred through the choroid or
the conventional pathway. Interestingly, they found that the
vast majority of injectate was recovered in the vortex veins,
implying that outflow through the choroid was dominant.
Of course, we note that the transport of water considered
by Moseley et al.48 differs from the transport of a large
molecule like bevacizumab, since the Pèclet number rele-
vant to water transport is much smaller (Pe ≈ 2) than for
bevacizumab transport (Pe ≈ 98), that is, diffusive transport
of water is much more significant than diffusive transport of
drug.

For the purposes of this work, the elastic properties of the
vitreous do not play a significant role and have, therefore,
been neglected. This is because the sclera is much stiffer
than the vitreous gel (by several orders of magnitude), and
thus the sclera is by far the structure that supports the major-
ity of the increased pressure in the eye produced by the
injection. Both the sclera and the vitreous, as is true for all
tissues, have some inherent viscosity, which opposes the rate
of tissue deformation. However, the viscous contribution that
resists eye deflation is essentially due to the resistance to
fluid outflow, which dwarfs the effect of scleral and vitreous
viscosities. This justifies neglecting viscosity of the sclera and
the vitreous.

The vitreous body has a complex microstructure and is
not isotropic. Accounting for anisotropy of vitreous perme-
ability in the model would not lead to conceptual complica-
tions, that is, the scalar permeability k in Equation (8) would
be replaced by a permeability tensor. This, however, would
require significant speculation about the values of this tensor
for which experimental data are sparse or entirely lacking.
Moreover, our simulations show the advective drug trans-
port, which is related to water flow, is largely irrelevant, and
this conclusion would not be modified by inclusion of the
anisotropy of vitreous permeability.

Vitreous structure and its anisotropy could in principle
also have a role in the diffusion processes. However, as
we have noted above, the diffusion of bevacizumab within
the vitreous is likely to be unhindered (i.e., essentially the
same as would be expected for diffusion of bevacizumab
in aqueous solution). This is justified on the basis of the
high porosity of the vitreous and is also generally consistent
with the work of Zhang et al.49 These authors experimentally
measured the diffusion of bevacizumab in the rabbit vitre-
ous, obtaining a fitted diffusivity of D = 12 ± 6 × 10−11

m2s−1, slightly higher than our value ofD= 7 × 10−11 m2s−1.
Zhang et al.49 did not account for convection in their data-
fitting process, and thus their diffusivity may be a slight over-
estimate of D. In any case, it appears that the value of D that
we utilized is reasonable.

The vitreous gel typically degrades with age, and this
can lead to the formation of liquid pools in the vitreous
cavity. The main conclusion of this work—namely, that fluid
motion generated during deflation of the eye after an intrav-
itreal injection contributes negligibly to drug transport—is
expected to apply also to the case of a liquefied vitreous.
However, when the vitreous gel is extensively liquefied, drug
transport in the vitreous chamber is expected to be domi-
nated by fluid motion generated by eye rotations.9,12–14

We have considered a highly idealized geometry and
modeled the eye as a perfect sphere. Although this is
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a somewhat crude approximation, it is a reasonable first
step, and we do not expect that our conclusions would
be markedly different if a more realistic geometry was
considered. This is because pressure variations within the
domain, which obviously depend on the domain shape,
are found to be very small compared to the overall IOP
variations. Moreover, within the time scale of interest, the
injected drug is predicted to remain close to the injec-
tion site, and therefore, the distribution of drug concen-
tration is only very modestly affected by the shape of the
boundary.

In conclusion, despite the relatively large velocities that
are generated during the eye globe deflation after an intrav-
itreal injection, this fluid motion does not significantly
contribute to drug transport in the eye and can be safely
neglected.
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